Decision Analysis Chapter 13.

Slides:



Advertisements
Similar presentations
1 Decision Analysis. 2 I begin here with an example. In the table below you see that a firm has three alternatives that it can choose from, but it does.
Advertisements

Decision Theory.
1 1 Slide © 2001 South-Western College Publishing/Thomson Learning Anderson Sweeney Williams Anderson Sweeney Williams Slides Prepared by JOHN LOUCKS QUANTITATIVE.
1 Decision Analysis What is it? What is the objective? More example Tutorial: 8 th ed:: 5, 18, 26, 37 9 th ed: 3, 12, 17, 24 (to p2) (to p5) (to p50)
1 1 Slide © 2004 Thomson/South-Western Payoff Tables n The consequence resulting from a specific combination of a decision alternative and a state of nature.
Chapter 18 Statistical Decision Theory Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 7 th.
Decision Theory.
LECTURE TWELVE Decision-Making UNDER UNCERTAINITY.
Chapter Topics The Payoff Table and Decision Trees Opportunity Loss
Chapter 21 Statistical Decision Theory
Chapter 3 Decision Analysis.
Decision Analysis. What is Decision Analysis? The process of arriving at an optimal strategy given: –Multiple decision alternatives –Uncertain future.
Managerial Decision Modeling with Spreadsheets
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Dr. C. Lightner Fayetteville State University
Decision analysis: part 2
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or.
Chapter 7 Decision Analysis
Slides prepared by JOHN LOUCKS St. Edward’s University.
Chapter 4 Decision Analysis.
1 1 Slide Decision Analysis n Structuring the Decision Problem n Decision Making Without Probabilities n Decision Making with Probabilities n Expected.
Part 3 Probabilistic Decision Models
Chapter 8 Decision Analysis MT 235.
1 1 Slide Decision Analysis Professor Ahmadi. 2 2 Slide Decision Analysis Chapter Outline n Structuring the Decision Problem n Decision Making Without.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 18-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
Topic 2. DECISION-MAKING TOOLS
Business 260: Managerial Decision Analysis
ISMT 161: Introduction to Operations Management
Decision Making Under Uncertainty and Under Risk
Decision analysis: part 1 BSAD 30 Dave Novak Source: Anderson et al., 2013 Quantitative Methods for Business 12 th edition – some slides are directly from.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Decision Analysis Introduction Chapter 6. What kinds of problems ? Decision Alternatives (“what ifs”) are known States of Nature and their probabilities.
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Operations Management Decision-Making Tools Module A
Decision Making Under Uncertainty Introduction to Business Statistics, 5e Kvanli/Guynes/Pavur (c)2000 South-Western College Publishing.
CD-ROM Chap 14-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition CD-ROM Chapter 14 Introduction.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 16-1 Chapter 16 Decision Making Statistics for Managers Using Microsoft.
1 1 Slide © 2005 Thomson/South-Western EMGT 501 HW Solutions Chapter 12 - SELF TEST 9 Chapter 12 - SELF TEST 18.
1 Decision Analysis Here we study the situation where the probability of each state of nature is known.
Chapter 8 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with Probabilities n Risk Analysis and Sensitivity.
“ The one word that makes a good manager – decisiveness.”
©2003 Thomson/South-Western 1 Chapter 19 – Decision Making Under Uncertainty Slides prepared by Jeff Heyl, Lincoln University ©2003 South-Western/Thomson.
1 1 Slide Decision Theory Professor Ahmadi. 2 2 Slide Learning Objectives n Structuring the decision problem and decision trees n Types of decision making.
Decision Making Under Uncertainty and Risk 1 By Isuru Manawadu B.Sc in Accounting Sp. (USJP), ACA, AFM
Chapter 9 - Decision Analysis - Part I
Statistics for Managers Using Microsoft Excel, 5e © 2008 Prentice-Hall, Inc.Chap 17-1 Statistics for Managers Using Microsoft® Excel 5th Edition Chapter.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 17-1 Chapter 17 Decision Making Basic Business Statistics 10 th Edition.
Welcome Unit 4 Seminar MM305 Wednesday 8:00 PM ET Quantitative Analysis for Management Delfina Isaac.
Decision Theory McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Models for Strategic Marketing Decision Making. Market Entry Decisions To enter first or to wait Sources of First-Mover Advantages –Technological leadership.
Decision Theory McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
12-1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Decision Analysis Chapter 12.
QUANTITATIVE TECHNIQUES
Decision Analysis.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Decision Theory Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
Chapter 12 Decision Analysis. Components of Decision Making (D.M.) F Decision alternatives - for managers to choose from. F States of nature - that may.
DECISION MODELS. Decision models The types of decision models: – Decision making under certainty The future state of nature is assumed known. – Decision.
Chapter 8 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with Probabilities n Risk Analysis and Sensitivity.
1 1 Slide © 2005 Thomson/South-Western Chapter 13 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with.
QUANTITATIVE TECHNIQUES
McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 4 Decision Analysis Building the Structure for Solving.
Slides 8a: Introduction
Chapter 19 Decision Making
Decision Analysis Chapter 15.
John Loucks St. Edward’s University . SLIDES . BY.
MNG221- Management Science –
Chapter 17 Decision Making
Presentation transcript:

Decision Analysis Chapter 13

Introduction to Decision Analysis Used to develop an optimal strategy, when decision maker is faced with several alternatives And An uncertain/ risk filed pattern of future events Examples Control equipment for coal fired generating units & uncertain future regarding sulphur content, construction costs etc

Step 1: Problem Formulation Verbal statement of the problem Identify the decision alternatives, the uncertain future events, aka as chance events, and The consequences associated with each decision alternative & each chance event outcome

Example 1 The Pittsburgh Development Corporation (PDC) purchased land that will be the site of a new luxury condominium complex. The location provides a spectacular view of downtown Pittsburgh and the golden triangle where Allegheny and Monogahela rivers meet to for the Ohio river. PDC plans to price the individual units between $300,000 and $1,400,000.PDC commissioned preliminary architectural drawings for three different projects: One with 30 condominiums, one with 60 and another with 90 condominium units The financial success of the project depends on the size of the size of the complex and the chance event concerning the demand for the condominiums

Objective: select the best size for PDC’s condominium complex Decision alternatives D1 = a small complex with 30 condominiums D2= a medium complex with 60 condominiums D3 = a large complex with 90 condominiums Select the best decision - influenced by chance events concerning the demand for the condominiums, known as States of Nature. For PDC these are: S1 = Strong demand for the condominiums S2 = Weak demand for the condominiums The Consequence is PDC’s profit

Influence Diagrams A graphical device showing the relationships among the decisions, the consequences for a decision problem Payoff Tables A table showing payoffs for all combinations of decision alternatives and states of nature Payoffs can be expressed in terms of profit, cost time, distance, or any other measure appropriate for the decision problem being analysed Decision Trees Provides a graphical representation of teh decision making process

States of Nature S1 Strong demand S2 Weak demand Small complex d1 8 7 Decision Alternatives Small complex d1 8 7 Medium Complex d2 14 5 Large Complex d3 20 -9

Decision Tree for Condominium Project

Decision Making Without Probabilities Optimistic Approach Evaluates each decision in terms of the best payoff Conservative Approach Evaluates each decision alternative in terms of the worst payoff that can occur Decision Alternatives Maximum Payoff for each decision alternative Small complex, d1 8 Max of the max payoff values Medium Complex d2 14 Large Complex d3 20 Decision Alternatives Maximum Payoff for each decision alternative Small complex, d1 Max of the min payoff values 7 Medium Complex d2 5 Large Complex d3 -9

Minimax Regret Approach Neither purely optimistic nor purely conservative PDC constructs a small condo complex & demand is actually strong Profit is $8million. However would have been $20 if gone with large complex, & demand is strong Thus opportunity lost or regret associated with decision alternative is 20-8= $12million Rij = | Vj* - Vij| Where: Rij = regret associated with decision alternative di & state of nature sj Vj* = payoff value corresponding to best decision for state of nature sj Vij = payoff corresponding to decision alternative di & state of nature sj Note:

Opportunity loss or regret table for the PDC condominium Project ($millions) select the min of the maximum regret values States of Nature S1 Strong demand S2 Weak demand Decision Alternatives Small complex d1 20-8 = 12 7-7 =0 Medium Complex d2 20-14 = 6 7 – 5 = 2 Large Complex d3 20 -20 = 0 7 -(-9) = 16

Decision Making with Probabilities

Expected Value Approach Remember: trying to quantify the options open to management & help come to a decision, where options have values e.g. profit / contribution etc., as well as probabilities, the concept of expected value (EV) is often used. Let: N = the number of state of nature or Outcomes P(sj)= probability of the state of nature sj or outcome of an event P(sj) ≥ 0 for all states of nature / outcomes ∑ P(sj) = P(s1) + P(s2) + P(s3) + ………. + P(sN) = 1 EV = expected number of times that this outcome will occur in ‘N’ events = N x p. or EV (di) = ∑ P(sj) Vij EV = its probability times the outcome or value of the event over a series of trials. It is a weighted average based on probabilities.

Draw the decision tree using the following information p. 604 Strong Demand (s1) P(s1) = 0.8 Weak Demand(s2) P(s2) EV ($) Small Condo block (d1) 8 x 0.8 7 x 0.2 7.8 Medium Condo block (d2) 14 x 0.8 5 x 0.2 12.2 Large Condo block(d3) 20 x 0.8 -9 x 0.2 14.2

Example 1: calculate daily sales of Product ‘T’  Units Probability EV . 1,000 0.2 200 2,000 0.3 600 3,000 0.4 1200 4,000 0.1 400 . 1.0 2,400 = EV of daily sales    Step 1 Calculate the EV of the project(s), which in the long run should approximate actual average of the event many times over.  In example 1 we do not expect the sales on any one day to be 2,400 units, but in the long run, over a large number of days, the average sales would be equal to 2,400 units per day. Advantages of expected value: Simple to understand and calculated. Represents whole distribution by a single figure. Arithmetically takes account of the expected variability of all outcomes.  Disadvantages: Single figure ==> that the characteristics of the distribution are being ignored. Makes the assumption that the decision maker is neutral

Decision Making and Expected Values -- Which project should be chosen? Rules   A project with a positive EV should be accepted  A project with a negative EV should be rejected.  Choose an option or alternative which has the highest EV of profit (or the lowest EV of cost).    Example 2:   Project A Project B Probability Profit EV Probability Profit EV___ 0.8 5,000 4000 0.1 (2,000) (200) 0.2 6000 1200 0.2 5000 1000 £5,200 0.6 7000 4200 0.1 8000 800 £6,000   Solution: Project B has a higher EV of profit. This means that on balance of probabilities it could offer a better return than A and is so arguably a better choice.  On the other hand the minimum return from project A would be £5000. In addition with project B there is a small chance of making a loss. NOTES: Although it appears to be widely used for the purpose , the concept of EV is not particularly well suited to one off decisions. EV can strictly only be interpreted as the value that would be obtained if a large number of similar decisions were taken with the same ranges of outcomes and associated probabilities.

Example 3: A distributor buys perishable articles for £2 per item and sells them at £5. Demand per day is uncertain and items unsold at the end of the day represent a write off because of perishiability. If he under stocks he loses profit he could have made. Daily Demand (units) No. of Days p 10 30 0.1 11 60 0.2 12 120 0.4 13 90 0.3 300 1.0 What stock level should be held from day to day? Conditional Profit calculation , CP = (10 x £5) - (10 x £2) = £24 (CP = £3 per unit) units demanded units bought Expected profit, EP = CP x probability of the demand

Sales price = £5 per unit Purchase price = £2 per unit STOCK OPTIONS 10 11 12 13 p demand CP EP 0.1 30 3 28 2.8 26 2.6 24 2.4 0.2 0.4 0.3 1.0

The optimum stock position given the pattern of demand is: to stock 12 units per day STOCK OPTIONS 10 11 12 13 p demand CP EP 0.1 30 3 28 2.8 26 2.6 24 2.4 0.2 6 33 6.6 31 6.2 29 5.8 0.4 13.2 36 14.4 34 13.6 0.3 9 9.9 10.8 39 11.7 1.0 32.5 33.5

Expected Value of Perfect Information States of Nature S1 Strong demand P(0.8) S2 Weak demand P(0.2) Decision Alternatives Small complex d1 8 7 Medium Complex d2 14 5 Large Complex d3 20 -9 IF PDC knew for certain that the state of nature S1 (strong demand) would occur then the best alternative would be d3, with a payoff of $20million If S1, select d3 and receive a payoff of $20 million If S2, select d1 and receive a payoff of $8 million

EV with Perfect Information (EVwPI) Based on the above information there is a 0.8 probability that the perfect information will indicate a state of nature s1 and the resulting decision d3 will provide a $20 million profit Similarly, with a 0.2 probability for the state of nature s2, the optimal decision alternative d1 will provide a $7million profit EV of decision strategy that uses perfect information is 0.8 (20) + .02 (7) = $17.4

EV without Perfect Information (EVwoPI) Earlier recommended decision using the EV approach was d3, with an EV of $14.2 (0.8 x 20) + (0.2 x -9) = $14.2

Expected Value of Perfect Information (EVPI) EVPI = | EVwPI – EVwoPI | EVxPI of $17.4 and the EVwoPI is $14.2; therefore the EV of the PI is $3.2 (17.4-14.2) In other words $3.2million represents the additional value that can be obtained if perfect information were available about the states of nature Real life; PI generally not available But for PDC maybe there is some merit in conducting a market survey to establish better the state of demand in the market

Note: regardless of whether the decision analysis involves maximisation or minimisation, the minimum expected opportunity loss always provides the best decision alternative In addition, the minimum expected opportunity loss is always equal to the EVPI Opportunity Loss/ Regret Table from earlier EOL (di): expected opportunity loss Strong demand (S1) Weak Demand (S2) Small (d1) 12 0.8 (12) + 0.2 (0) = 9.6 Medium (d2) 6 2 0.8 (6) + 0.2 (2) = 5.2 Large (d3) 16 0.8 (0) + 0.2 (16) = 3.2