1 Pertemuan 1 SEJARAH JARINGAN SYARAF TIRUAN Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.

Slides:



Advertisements
Similar presentations
God. NEURAL NETWORKS M. Alborzi, Ph. D. Petroleum University of Technology October, 2001.
Advertisements

FUNCTION FITTING Student’s name: Ruba Eyal Salman Supervisor:
1 Pertemuan 9 Verilog HDL Matakuliah: H0362/Very Large Scale Integrated Circuits Tahun: 2005 Versi: versi/01.
Arsitektur Jaringan Pertemuan 09 Matakuliah: H0484/Jaringan Komputer Tahun: 2007.
Artificial Neural Network Motivation By Dr. Rezaeian Modified: Vali Derhami Yazd University, Computer Department HomePage:
1 Pertemuan 6 Elementary UDP Sockets Matakuliah: H0483 / Network Programming Tahun: 2005 Versi: 1.0.
Dynamic SQL Pertemuan 11 Matakuliah: T0413/Current Popular IT II Tahun: 2007.
1 Pertemuan 10 Arsitektur Jaringan Model OSI Matakuliah: H0174/Jaringan Komputer Tahun: 2006 Versi: 1/0.
September 7, 2010Neural Networks Lecture 1: Motivation & History 1 Welcome to CS 672 – Neural Networks Fall 2010 Instructor: Marc Pomplun Instructor: Marc.
1 Pertemuan 01 Pandangan Umum Jaringan Matakuliah: H0372/Manajemen Jaringan Tahun: 2005 Versi: 1/0.
1 Pertemuan 26 Object Relational Database Management System (Lanjutan) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan 23 Object database design (Lanjutan bagian 2) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
Pertemuan 01 Interactive Multimedia
1 Pertemuan 13 BACK PROPAGATION Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
1 Pertemuan 09 Design and Production Matakuliah: T0553/Sistem Multimedia Tahun: 2005 Versi: 5.
1 Pertemuan 05 Firewall Matakuliah: H0451/Praktikum Jaringan Komputer Tahun: 2006 Versi: 1/0.
1 Pertemuan 15 ADAPTIVE RESONANCE THEORY Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
1 Pertemuan 17 Seleksi DBMS Matakuliah: >/ > Tahun: > Versi: >
Carla P. Gomes CS4700 CS 4700: Foundations of Artificial Intelligence Prof. Carla P. Gomes Module: Intro Neural Networks (Reading:
1 Pertemuan 21 Parallelism and Superscalar Matakuliah: H0344/Organisasi dan Arsitektur Komputer Tahun: 2005 Versi: 1/1.
1 Pertemuan 21 Audit Reporting Matakuliah:A0274/Pengelolaan Fungsi Audit Sistem Informasi Tahun: 2005 Versi: 1/1.
1 Pertemuan 11 Understanding Marketing Strategies on Internet Matakuliah: J0324/Sistem e-Bisnis Tahun: 2005 Versi: 02/02.
1 Pertemuan 11 QUIZ Matakuliah: J0274/Akuntansi Manajemen Tahun: 2005 Versi: 01/00.
Artificial Neural Networks (ANNs)
1 Pertemuan 20 Time & Condition Clauses with Future reference Matakuliah: G0134 – Grammar III Tahun: 2005 Versi: revisi 1.
1 Pendahuluan Pertemuan 1 Matakuliah: T0293/Neuro Computing Tahun: 2005.
1 Pertemuan 17 HOPFIELD NETWORK Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
Introduction to Neural Networks John Paxton Montana State University Summer 2003.
EE 342 FEEDBACK CONTROL SYSTEMS
1 Pertemuan #3 Clocks and Realtime Matakuliah: H0232/Sistem Waktu Nyata Tahun: 2005 Versi: 1/5.
1 Pertemuan 9 JARINGAN LEARNING VECTOR QUANTIZATION Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
Neural Networks An Introduction.
1 Pertemuan 18 HOPFIELD DESIGN Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
Pertemuan 02 Aspek dasar keamanan Jaringan dan ketentuan baku OSI
1 Pertemuan 1 Sistem Informasi pada dunia nyata Matakuliah: H0472 / Konsep Sistem Informasi Tahun: 2006 Versi: 1.
CIS 588 Neural Computing Course details. CIS 588 Neural Computing Course basics:  Instructor - Iren Valova  Tuesday, Thursday 5 - 6:15pm, T 101  1.
Neural Networks And Its Applications By Dr. Surya Chitra.
Introduction to Neural Networks John Paxton Montana State University Summer 2003.
IE 585 Introduction to Neural Networks. 2 Modeling Continuum Unarticulated Wisdom Articulated Qualitative Models Theoretic (First Principles) Models Empirical.
Human Brain The brain is a highly complex, non-linear, and parallel computer, composed of some 1011 neurons that are densely connected (~104 connection.
ANN : An introduction.
Yazd University, Electrical and Computer Engineering Department Course Title: Advanced Software Engineering By: Mohammad Ali Zare Chahooki 1 Introduction.
Introduction to Machine Learning Instructor Shie-Jue Lee ( 李錫智 )
1 Introduction to Neural Networks And Their Applications.
Neural Networks Presented by M. Abbasi Course lecturer: Dr.Tohidkhah.
IE 585 History of Neural Networks & Introduction to Simple Learning Rules.
Artificial Intelligence Methods Neural Networks Lecture 1 Rakesh K. Bissoondeeal Rakesh K.
Artificial Neural Networks and Their Applications Prof. Les Sztandera.
1 1 Introduction. 1 2 Course Objectives This course gives an introduction to basic neural network architectures and learning rules. Emphasis is placed.
1 Neural Networks MUMT 611 Philippe Zaborowski April 2005.
INTRODUCTION TO NEURAL NETWORKS 2 A new sort of computer What are (everyday) computer systems good at... and not so good at? Good at..Not so good at..
Introduction to Neural Network Session 1 Course: T0293 – NEURO COMPUTING Year: 2013.
Pertemuan <<11>> <<HELP DESK (01) >>
Waqas Haider Khan Bangyal
MATLAB® An Introduction.
Introduction.
Pertemuan 22 The Business Views of the Technology Architecture
Pertemuan 7 JARINGAN INSTAR DAN OUTSTAR
Tahun : <<2005>> Versi : <<1/1>>
Joost N. Kok Universiteit Leiden
Pertemuan 11 Model TCP/IP
Machine Learning Training
Artificial Neural Networks (ANNs)
Neural Networks.
Kocaeli University Introduction to Engineering Applications
Introduction.
Introduction to Neural Networks And Their Applications - Basics
III. Introduction to Neural Networks And Their Applications - Basics
Introduction.
Machine learning: What is it?
Presentation transcript:

1 Pertemuan 1 SEJARAH JARINGAN SYARAF TIRUAN Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1

2 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Menguraikan sejarah perkembangan dan konsep dasar jaringan syaraf tiruan.

3 Outline Materi Sejarah JST Model Neuron Arsitektur Jaringan

4 SEJARAH JST Pre-1940: von Hemholtz, Mach, Pavlov, etc. –General theories of learning, vision, conditioning –No specific mathematical models of neuron operation 1940s: Hebb, McCulloch and Pitts –Mechanism for learning in biological neurons –Neural-like networks can compute any arithmetic function 1950s: Rosenblatt, Widrow and Hoff –First practical networks and learning rules

5 SEJARAH JST 1960s: Minsky and Papert –Demonstrated limitations of existing neural networks, new learning algorithms are not forthcoming, some research suspended 1970s: Amari, Anderson, Fukushima, Grossberg, Kohonen –Progress continues, although at a slower pace 1980s: Grossberg, Hopfield, Kohonen, Rumelhart, etc. –Important new developments cause a resurgence in the field

6 APLIKASI Aerospace –High performance aircraft autopilots, flight path simulations, aircraft control systems, autopilot enhancements, aircraft component simulations, aircraft component fault detectors Automotive –Automobile automatic guidance systems, warranty activity analyzers Banking –Check and other document readers, credit application evaluators Defense –Weapon steering, target tracking, object discrimination, facial recognition, new kinds of sensors, sonar, radar and image signal processing including data compression, feature extraction and noise suppression, signal/image identification Electronics –Code sequence prediction, integrated circuit chip layout, process control, chip failure analysis, machine vision, voice synthesis, nonlinear modeling

7 APLIKASI Financial –Real estate appraisal, loan advisor, mortgage screening, corporate bond rating, credit line use analysis, portfolio trading program, corporate financial analysis, currency price prediction Manufacturing –Manufacturing process control, product design and analysis, process and machine diagnosis, real-time particle identification, visual quality inspection systems, beer testing, welding quality analysis, paper quality prediction, computer chip quality analysis, analysis of grinding operations, chemical product design analysis, machine maintenance analysis, project bidding, planning and management, dynamic modeling of chemical process systems Medical –Breast cancer cell analysis, EEG and ECG analysis, prosthesis design, optimization of transplant times, hospital expense reduction, hospital quality improvement, emergency room test advisement

8 APLIKASI Robotics –Trajectory control, forklift robot, manipulator controllers, vision systems Speech –Speech recognition, speech compression, vowel classification, text to speech synthesis Securities –Market analysis, automatic bond rating, stock trading advisory systems Telecommunications –Image and data compression, automated information services, real- time translation of spoken language, customer payment processing systems Transportation –Truck brake diagnosis systems, vehicle scheduling, routing systems

9 BIOLOGI Neurons respond slowly – s compared to s for electrical circuits The brain uses massively parallel computation –  neurons in the brain –  10 4 connections per neuron

10 MODEL NEURON SINGLE INPUT NEURON a = f ( n ) = f ( w.p + b )

11 FUNGSI TRANSFER  Hard Limit Transfer Function a = 0 jika n < 0 a = 1 jika n  0

12 FUNGSI TRANSFER YANG LAIN

13 MULTIPLE INPUT NEURON n = W.p + b a = f ( W.p + b )

14 PENYEDERHANAAN