Quiz 1 This is a photograph of an apple and feather free fall in a evacuated chamber. The apple and feather are released from the top. Suppose the camera.

Slides:



Advertisements
Similar presentations
AP C UNIT 3 WORK & ENERGY.
Advertisements

Kinetic Energy and Work
AP Physics C Multiple Choice Dynamics.
PHYSICS 218 Final Exam Fall, 2006 STEPS __________________________________________________________________ No calculators are allowed in the test. Be sure.
1 Chapter Four Newton's Laws. 2  In this chapter we will consider Newton's three laws of motion.  There is one consistent word in these three laws and.
Quiz 1 This is a photograph of an apple and feather free fall in a evacuated chamber. The apple and feather are released from the top. Suppose the camera.
Work Done by Non-conservative Forces
Q07. Conservation of Energy
APC -Unit 2. 2 nd Law A 72kg person stands on a scale which sits on a floor of elevator. It starts to move from rest upward with speed v(t) = 3t +
When a car accelerates forward on a level roadway, which force is responsible for this acceleration? State clearly which.
Physics 7C lecture 13 Rigid body rotation
PHY131H1S - Class 20 Today: Gravitational Torque Rotational Kinetic Energy Rolling without Slipping Equilibrium with Rotation Rotation Vectors Angular.
Physics 111 Practice Problem Statements 07 Potential Energy & Energy Conservation SJ 8th Ed.: Chap 7.6 – 7.8, 8.1 – 8.5 Contents: 8-4, 8-5, 8-16, 8-19*,
Physics 101: Lecture 15, Pg 1 Physics 101: Lecture 15 Rolling Objects l Today’s lecture will cover Textbook Chapter Exam III.
Physics 111: Mechanics Lecture 10 Dale Gary NJIT Physics Department.
Chapter Ten Oscillatory Motion. When a block attached to a spring is set into motion, its position is a periodic function of time. When we considered.
General Physics 1, Additional questions By/ T.A. Eleyan
Physics 151: Lecture 22, Pg 1 Physics 151: Lecture 22 Today’s Agenda l Topics çEnergy and RotationsCh çIntro to Rolling MotionCh. 11.
T101Q7. A spring is compressed a distance of h = 9.80 cm from its relaxed position and a 2.00 kg block is put on top of it (Figure 3). What is the maximum.
Applications of Newton’s Laws
Lecture 8 Applications of Newton’s Laws (Chapter 6)
Mechanical Energy and Simple Harmonic Oscillator 8.01 Week 09D
Chapter 15 Oscillatory Motion.
Physics 6B Oscillations Prepared by Vince Zaccone
Classical Mechanics Review 4: Units 1-19
Physics. Session Rotational Mechanics - 5 Session Objectives.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 6 Physics, 4 th Edition James S. Walker.
Forces.
Chapter 11 Angular Momentum.
Chapter 8: Torque and Angular Momentum
Give the expression for the velocity of an object rolling down an incline without slipping in terms of h (height), M(mass), g, I (Moment of inertia) and.
Copyright © 2010 Pearson Education, Inc. Chapter 7 Work and Kinetic Energy.
Potential Energy and Conservative Forces
Review and then some…. Work & Energy Conservative, Non-conservative, and non-constant Forces.
T071 Q17. A uniform ball, of mass M = kg and radius R = 0
Physics 201: Lecture 19, Pg 1 Lecture 19 Goals: Specify rolling motion (center of mass velocity to angular velocity Compare kinetic and rotational energies.
Springs We are used to dealing with constant forces. Springs are more complicated - not only does the magnitude of the spring force vary, the direction.
Problems Ch(1-3).
Energy Transformations and Conservation of Mechanical Energy 8
Energy Transformations and Conservation of Mechanical Energy 8.01 W05D2.
Conservative Forces: The forces is conservative if the work done by it on a particle that moves between two points depends only on these points and not.
Physics. Session Work, Power and Energy - 3 Session Objectives.
Physics 215 – Fall 2014Lecture Welcome back to Physics 215 Today’s agenda: More gravitational potential energy Potential energy of a spring Work-kinetic.
Wednesday, Mar. 5, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #13 Wednesday, Mar. 5, 2008 Dr. Jaehoon Yu Static and.
Energy Examples Serway and Jewett 8.1 – 8.3 Physics 1D03 - Lecture 22.
7.4) Kinetic Energy andThe Work-Kinetic Energy Theorem Figure (7.13) - a particle of mass m moving to the right under the action of a constant net force.
A certain pendulum consists of a 2
Conservation of Energy
Lecture 7 Newton’s Laws of Motion. Midterm Test #1 - Thursday!  21 multiple-choice problems - A calculator will be needed. - CHECK YOUR BATTERIES! -
A 19-kg block on a rough horizontal surface is attached to a light spring (force constant = 3.0 kN/m). The block is pulled 6.3 cm to the right from.
Wednesday, June 7, 2006PHYS , Summer 2006 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #6 Wednesday, June 7, 2006 Dr. Jaehoon Yu Application.
Chapter 5 Two Dimensional Forces Equilibrium An object either at rest or moving with a constant velocity is said to be in equilibrium The net force acting.
Potential Energy and Conservation of Energy
Periodic Motion What is periodic motion?
Wednesday June 15, PHYS , Summer I 2005 Dr. Andrew Brandt PHYS 1443 – Section 001 Lecture #9 Wednesday June 15, 2005 Dr. Andrew Brandt Lightning.
Wednesday, Nov. 10, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Moment of Inertia 2.Parallel Axis Theorem 3.Torque and Angular Acceleration 4.Rotational.
Oscillations. Periodic Motion Periodic motion is motion of an object that regularly returns to a given position after a fixed time interval A special.
Simple Harmonic Motion Periodic Motion Simple periodic motion is that motion in which a body moves back and forth over a fixed path, returning to each.
PHY 151: Lecture Motion of an Object attached to a Spring 12.2 Particle in Simple Harmonic Motion 12.3 Energy of the Simple Harmonic Oscillator.
Chapter 6 Force and Motion II. Forces of Friction When an object is in motion on a surface or through a viscous medium, there will be a resistance to.
60 1. What is the mass M in the system as given in the
Applications of Newton’s Laws
Physics 111: Mechanics Lecture 5
Chapter 5:Using Newton’s Laws: Friction, Circular Motion, Drag Forces
Physics 101: Lecture 13 Rotational Kinetic Energy and Inertia
APC -Unit 2.
Equilibrium and Dynamics
PHYS 211 Exam 1 HKN Review Session
Instructor: Dr. Tatiana Erukhimova
Energy Problems.
Presentation transcript:

Quiz 1 This is a photograph of an apple and feather free fall in a evacuated chamber. The apple and feather are released from the top. Suppose the camera opened flash every 1 s. Suppose A1 is the distance from t = 0s to t = 1 s, A2 is the distance from t = 1s to t =2s, A3 is the distance from t = 2s to t = 3s …… what is the ratio of A1: A2: A3……. (2) If camera opened flash every 0.06s, is the ratio of the distance between every 0.06 s the same as above or change? Why?

Answer: The ratio is 1:3:5 :7……(2n -1), here n = 1, 2, 3, Show it in general case, suppose the time interval is Δt The distance from 0 –one Δt, A1 = ½*g*(Δt)2 (notice here I consider the distance, so I neglect (-) sign) The distance from Δt---2 Δt, A2 = ½*g*(2Δt)2 -½*g*(Δt)2 = ½*g*(Δt)2 (22 -1) Using the same way the distance from 2Δt---3 Δt, A3 = ½*g*(Δt)2 (32 - 22) A4 = ½*g*(Δt)2 (42 - 32) ……. An = ½*g*(Δt)2 (n2 – (n-1)2) = ½*g*(Δt)2 (n2 – n2 +2n-1) = ½*g*(Δt)2 (2n-1) Therefore the ratio should be 1:3:5…….(2n-1), the ratio is independent of Δt

quiz2 (1) A simple method of measuring the static coefficients of friction: Suppose a block is placed on a rough surface inclined relative to the horizontal as show in the Fig. The incline angle is increased until the block stars to move. Measuring the critical angle θc at which this slipping just occurs, you can obtain μs Proof: μs=tan θc (2) The 10.2 Kg block is held in place by massless rope passing over two massless, frictionless pulleys. Find the tensions T1, T2, T3, T4, T5 and magnitude of force F .

Solution: (1) If the block is not moving, Newton second law applied to the block. For this balanced situation When the incline angle is increased until the block Is on the verge of slipping, the force of static Friction has reached its maximum value The angle in this situation is the critical angle θc, in that situation, fsmax = μs N= μs mgcosθc = mg sinθc Solve the above equations, μs N= μs mgcosθc = mg sinθc - μs=tan θc

(2)

Quiz 3 You have a new job designing rides for an amusement park Quiz 3 You have a new job designing rides for an amusement park. In one wide, the rider’s chair is attached by a 9.0-m-long chain to the top of a tall rotation tower. The tower spins the chair at rate of 1.0rev every 4.0 s. You’ve assumed that the maximum possible combined weight of the chair and rider is 150 Kg. You’ve found a great price for chain at the local discount store, but your supervisor wonders if the chain is strong enough. You contact the manufacturer and learn that the chain is rated to withstand a tension of 3000N. Will this chain be strong enough for the ride? Why?

Solution: Newton’s second law along the r-axis is T sinθ = Fr = mω2r Notice here, r is the radius of the circle, it is not the length of chain. r=L sinθ, also tension T is along the chain, it is not along the r-axis. From above equation: T sinθ = mω2r = mω2Lsinθ → T = mω2L = 3330N Thus, the 3000 N chain is not strong enough for the ride.

Quiz4: Figure shows a contest in which a sphere, a cylinder, and circular hoop all of mass M and radius R( notice particle is not taking the race). are rolling down from rest at the same instant of time. ( please read text book P 366-367 first) What is the speed of center of mass for each of the object when they reach the bottom What is acceleration of the center of mass for each? (3) Which will win the downhill race? why

If we choose the bottom of the ramp as the zero point of potential energy, from energy conservation Here C is a constant that depends on the object’s geometry. C = 1 for hoop, =1/2 for cylinder = 2/5 for sphere From above equation

Continue: Since they have the same h and θ, the greater of c, the longer of time. Hoop’s c =1> cylinder’s c = ½, > sphere’s c = 2/5, that results in Sphere taking shortest time, cylinder second, hoop is the last

Quiz 5: Two equal masses are attached to identical ideal springs next to one another. One mass is pulled so its spring stretches 20 cm and the other pulled so its spring stretches only 10 cm. The masses are released simultaneously. Which mass reaches the equilibrium point first? Explain your reasoning

Quiz 5: Answer: They reach the equilibrium point at the same time If they have the same m and k, they will have the same period. The maximum displacement does not effect the period. The time reaches the equilibrium position should be T/4, since two spring-mass systems have the same period, two masses should reach the equilibrium position at same time. Note: at equilibrium position x(t) = 0, the function for this oscillation is

Quiz 6: (1)In Isothermal process, the work on the ideal gas as the volume changes from Vi to Vf is: Derive it (2) A mole of gas at temperature 20oC compressing at constant temperature until the gas pressure double. What is the work done on the gas? What is the thermal energy change in this process? How much heat released? (1) start from the definition:

That means external force does the work on the gas) 2. A mole of gas at temperature 20oC compressing at constant temperature until the gas pressure double. What is the work done on the gas? What is the thermal energy change in this process? How much heat released? 2. Answer: Notice when temperature is a constant, gas pressure double, the volume should be half, Vi/Vf = 2. From above equation: W = nRT ln(2) = 1* 8.31 * 293* ln(2) = 1687 J ( Work should be positive That means external force does the work on the gas) In isothermal process, ΔT = 0 so the thermal energy change ΔE = 0 too. ΔE = W + Q, so Q = -1687 J, negative sign means heat is released from gas