Control Loop Hardware and Troubleshooting

Slides:



Advertisements
Similar presentations
Chapter 9 PID Tuning Methods.
Advertisements

Modelling and Simulation 7. September 2014 / Dr. –Ing Naveed Ramzan 1 Instrumentation and control Department of Chemical Engineering, U.E.T. Lahore Pakistan.
Objectives Control Terminology Types of controllers –Differences Controls in the real world –Problems –Response time vs. stability.
Ratio Control Chapter 15.
Distributed Control Systems PROF.DR. JOYANTA KUMAR ROY NARULA INSTITUTE OF TECHNOLOGY DEPT. OF ELECTRONICS AND INSTRUMENTATION ENGINEERING.
Control System Instrumentation
Chapter 3 Dynamic Modeling.
Chapter 10 Control Loop Troubleshooting. Overall Course Objectives Develop the skills necessary to function as an industrial process control engineer.
CHE 185 – PROCESS CONTROL AND DYNAMICS
1 Process Control and Data Acquisition Systems CM4120 Chemical Plant Operations.
Cheer up. It is not as difficult as you thought!
CHE 185 – PROCESS CONTROL AND DYNAMICS
Introduction To Programmable Logic Controllers
Process Control and Data Acquisition Systems
Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering AguaRed.
CONTROL SYSTEM INSTRUMENTATION
Control System Instrumentation
Lecture 3 Control valves.
Sensor Systems for CPI Sensor Transmitter temperature sensors
CHE 185 – PROCESS CONTROL AND DYNAMICS OPTIMIZATION AND PRIMARY LOOP ELEMENTS.
Classification of Instruments :
Chemical Engineering 3P04 Process Control Tutorial # 2 Learning goals 1.The feedback cause-effect principle 2. Key element in the loop: The control valve.
CONTROL VALVE - THEORY & SIZING
Distributed Control Systems Emad Ali Chemical Engineering Department King SAUD University.
CHE 185 – PROCESS CONTROL AND DYNAMICS DCS AND PLC FUNDAMENTALS.
Chemical and Bio-Process Control
PLC: Programmable Logical Controller
Chapter 7 PID Control.
Unit 3a Industrial Control Systems
Cascade, Ratio, and Feedforward Control
Industrial Process Control: CONTROL OF HEAT EXCHANGER
Distributed Control System Group D Louay Sirwi Abdallah Jafar Dr. H. Shabaik SE – 401.
Chemical Engineering 3P04
Topic 7 Control Valves. What We Will Cover Topic 1 Introduction To Process Control Topic 2 Introduction To Process Dynamics Topic 3 Plant Testing And.
Temperature Control Loop
CHAPTER 9 Control System Instrumentation
Process Control Priyatmadi Pengantar Pengendalian Proses Priyatmadi Jurusan teknik Elektro FT UGM.
CONTROL VALVES By M.Freethan M
Power Plant Construction and QA/QC Section 5.4 – Key Systems and Components Engineering Technology Division.
Chemical Engineering 3P04 Process Control Tutorial # 6 Learning goals 1.Learn basic principles of equipment in a control loop 2.Build understanding of.
Control System Instrumentation
Pengantar Pengendalian Proses
Topics of presentation
Feedback Controllers Chapter 7.
Introduction to PLC by Dr. Amin Danial Asham.
Programmable Logic Controller (PLC)
Control Theory Control System Objectives  Establish a final condition  Provide safe operation  Eliminate the human element  Assure economical operation.
EEB5213 / EAB4233 Plant Process Control Systems Digital Implementation of PID Controller.
Digital to Analog Converters (DAC) 1 Technician Series ©Paul Godin March 2015.
ERT 210/4 Process Control Hairul Nazirah bt Abdul Halim Office: CHAPTER 8 Feedback.
Chapter 8 Feedback Controllers 1. On-off Controllers Simple Cheap Used In residential heating and domestic refrigerators Limited use in process control.
"... To design the control system that effectively matches the plant requires an understanding of the plant rivaling that of the plant's designers, operators,
CISSP Common Body of Knowledge Review by Alfred Ouyang is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
CHAPTER 9 Control System Instrumentation
PROGRAMMABLE LOGIC CONTROLLER
Session 6 - Agenda BREAK Activity Est. Time 1. Agenda
Introduction to Final Control Elements
Actuator Edi Leksono Department of Engineering Physics
Author: Nurul Azyyati Sabri
INTRODUCTION TO ELECTRONIC INSTRUMENTATION
Control System Instrumentation
Chapter 1: Overview of Control
Controllers and Positioners
Professor Robert L. Heider, PE
INTRODUCTION TO ELECTRONIC INSTRUMENTATION
Control System Instrumentation
Control System Instrumentation
Control System Instrumentation
Instrumentation and control
Presentation transcript:

Control Loop Hardware and Troubleshooting Chapter 2 Control Loop Hardware and Troubleshooting

Overall Course Objectives Develop the skills necessary to function as an industrial process control engineer. Skills Tuning loops Control loop design Control loop troubleshooting Command of the terminology Fundamental understanding Process dynamics Feedback control

Control Relevant Aspects of Control Loop Hardware Necessary for control loop troubleshooting: To determine if each subsystem (control computer, actuator system, and sensor system) is functioning properly To understand the proper design and operation of all the components that make-up each of the subsystems of a control loop

Control Diagram of a Typical Control Loop

Components and Signals of a Typical Control Loop

Controllers/Control Computers Pneumatic controllers Electronic analog controllers Supervisory control computers Distributed Control Systems (DCS) Fieldbus technology

Pneumatic Controllers - Phase I Introduced in the 1920’s Installed in the field next to the valve Use bellows, baffles, and nozzles with an air supply to implement PID action. Provided automatic control and replaced manual control for many loops

Pneumatic Controllers - Phase II Transmitter type pneumatic controllers began to replace field mounted controllers in the late 1930’s. Controller located in control room with pneumatic transmission from sensors to control room and back to the valve. Allowed operators to address a number of controllers from a centralized control room.

Pneumatic Controller Installation

Electronic Analog Controllers Became available in the late 1950’s. Replaced the pneumatic tubing with wires. Used resistors, capacitors, and transistors based amplifiers to implement PID action. Out sold pneumatic controllers by 1970. Allowed for advanced PID control: ratio, feedforward, etc.

Electronic Controller Installation

Computer Control System Based upon a mainframe digital computer. Offered the ability to use data storage and retrieval, alarm functions, and process optimization. First installed on a refinery in 1959. Had reliability limitations.

Supervisory Control Computer

Distributed Control System- DCS Introduced in the late 1970’s. Based upon redundant microprocessors for performing control functions for a part of the plant. SUPERIOR RELIABILITY Less expensive per loop for large plants. Less expensive to expand. Facilitates the use of advanced control.

DCS Architecture

DCS and Troubleshooting The data storage and trending capability of a DCS greatly facilitate troubleshooting control problems. That is, the sources of process upsets can many times be tracked down through the process by trending a group of process measurements until the source of the process upset is located.

Control Relevant Aspects of a DCS The most important control aspect of a DCS is the cycle time for controller calls. The shortest cycles times are typically around 0.2 seconds while most loops can be executed every 0.5 to 1.0 seconds. These cycle times affect flow control loops and other fast control loops.

PLCs PLCs can withstand has industrial enviroments. PLCs are used for discrete and continuous control. Discrete control is used for startup and shutdown and batch sequencing operations. Ladder logic is used to program PLCs.

PLCs vs. DCSs Advantage of PLCs: Advantage of DCSs: Better to withstand harsh operating enviroments, faster cycle time are possible, easier to maintain due to modular nature and lower cost for small and medium sized applications. Advantage of DCSs: Lower cost per loop for applications involving a large number of control loops.

PLC Architecture

Fieldbus Technology Based upon smart valves, smart sensors and controllers installed in the field. Uses data highway to replace wires from sensor to DCS and to the control valves. Less expensive installations and better reliability. Can mix different sources (vendors) of sensors, transmitters, and control valves. Now commercially available and should begin to replace DCSs.

Fieldbus Architecture

Actuator System Control Valve I/P converter Instrument air system Valve body Valve actuator I/P converter Instrument air system

Typical Globe Control Valve

Cross-section of a Globe Valve

Types of Globe Valves Quick Opening- used for safety by-pass applications where quick opening is desired Equal Percentage- used for about 90% of control valve applications since it results in the most linear installed characteristics Linear- used when a relatively constant pressure drop is maintained across the valve

Inherent Valve Characteristics

Use of the Valve Flow Equation

Typical Flow System

Pressure Drop vs. Flow Rate

Installed Flow Characteristic

Slope of Installed Characteristic

Effect of Linearity in the Installed Valve Characteristics Highly nonlinear installed characteristics can lead to unstable flow control or a sluggish performance for the flow controller.

Flow System with Relatively Constant Valve Pressure Drop

Pressure Drop vs. Flow Rate

Installed Valve Characteristics

Analysis of These Examples Note the linear installed valve characteristics over a wide range of stem positions. If the ratio of pressure drop across the control valve for the lowest flow rate to the value for the highest flow rate is greater than 5, an equal percentage control valve is recommended.

Control Valve Design Procedure Evaluate Cv at the maximum and minimum flow rate using the flow equation for a valve (Eq 2.3.3). Determine which valves can effectively provide the max and min flow rate remembering that, in general, the valve position should be greater than about 15% open for the minimum flow rate and less than 85% open for the maximum flow rate. Choose the smallest valve that meets the above criterion for the minimum capital investment or choose the largest valve to allow for future throughput expansion.

Additional Information Required to Size a Control Valve CV versus % open for different valve sizes. Available pressure drop across the valve versus flow rate for each valve. Note that the effect of flow on the upstream and downstream pressure must be known.

Valve Sizing Example Size a control valve for max 150 GPM of water and min of 50 GPM.

Determine CV at Max and Min FV Use the valve flow equation (Equation 2.3.3) to calculate Cv For DP, use pressure drop versus flow rate (e.g., Table on page 82)

Valve Position for Max and Min Flows for Different Sized Valves

Analysis of Results 2-inch valve appears to be best overall choice: least expensive capital and it can provide up to a 50% increase in throughput. 3-inch and 4-inch valve will work, but not recommended because they will cost more to purchase. The 2-inch valve will provide more than enough extra capacity (i.e., something else will limit capacity for it)

Valve Deadband It is the maximum change in instrument air pressure to a valve that does not cause a change in the flow rate through the valve. Deadband determines the degree of precision that a control valve or flow controller can provide. Deadband is primarily affected by the friction between the valve stem and the packing.

For Large Diameter Lines (>6”), Use a Butterfly Valve

Valve Actuator Selection Choose an air-to-open for applications for which it is desired to have the valve fail closed. Choose an air-to-close for applications for which it is desired to have the valve fail open.

Cross-section of a Globe Valve

Optional Equipment Valve positioner- a controller that adjusts the instrument air in order to maintain the stem position at the specified position. Greatly reduces the deadband of the valve. Positioners are almost always used on valves serviced by a DCS. Booster relay- provides high capacity air flow to the actuator of a valve. Can significantly increase the speed of large valves.

Photo of a Valve Positioner

Adjustable Speed Pumps Used extensively in the bio-processing industries (better to maintain sterile conditions and relatively low flow rates). Fast and precise. Do require an instrument air system (i.e., 4-20 mA signal goes directly to pump). Much higher capital costs than control valves for large flow rate applications.

Control Relevant Aspects of Actuator Systems The key factors are the deadband of the actuator and the dynamic response as indicated by the time constant of the valve. Control valve by itself- deadband 10-25% and a time constant of 3-15 seconds. Control valve with a valve positioner or in a flow control loop- deadband 0.1-0.5% and a time constant of 0.5-2 seconds.