1 REVIEW OF ASSIGNMENT #3 ARES Channel Wing HPV (3/8 submitted on time)

Slides:



Advertisements
Similar presentations
Critical Reading Strategies: Overview of Research Process
Advertisements

Introductory Circuit Analysis Robert L. Boylestad
Statistical Techniques I EXST7005 Start here Measures of Dispersion.
Abstract Since dawn of time humans have aspired to fly like birds. However, human carrying ornithopter that can hover by flapping wings doesn’t exist despite.
Science Fair Project 2015.
KEEL TRIM TAB AOE 3014 TAKE-HOME COMPUTER PROBLEM HONOR SYSTEM PLEDGE - NO AID GIVEN OR RECEIVED EXCEPT FOR PART 1 Part 1 DUE October 17, 2008;
Statistics 100 Lecture Set 7. Chapters 13 and 14 in this lecture set Please read these, you are responsible for all material Will be doing chapters
What is engineering? Engineering - The branch of science and technology concerned with the design, building, and use of engines, machines, and structures.
AIR NAVIGATION Part 3 The 1 in 60 rule.
The various engineering and true stress-strain properties obtainable from a tension test are summarized by the categorized listing of Table 1.1. Note that.
Selection of Research Participants: Sampling Procedures
LIAL HORNSBY SCHNEIDER
Using process knowledge to identify uncontrolled variables and control variables as inputs for Process Improvement 1.
A second order ordinary differential equation has the general form
EMSE 3123 Math and Science in Education
1 Seventh Lecture Error Analysis Instrumentation and Product Testing.
Problem Solving Part 2 Resonance.
Introduction to Aeronautical Engineering
Module 5.2 Wind Turbine Design (Continued)
Adaptations to Resistance Training. Key Points Eccentric muscle action adds to the total work of a resistance exercise repetition.
AE 1350 Lecture Notes #7 We have looked at.. Continuity Momentum Equation Bernoulli’s Equation Applications of Bernoulli’s Equation –Pitot’s Tube –Venturi.
AE 1350 Lecture Notes #9.
Engineering Models 1 By: Ross King & Daniel Luddeke.
Power Generation from Renewable Energy Sources
Spreadsheets and Microsoft Excel. Introduction n A spreadsheet (called a worksheet in Excel) is a two-dimensional array of cells containing data to be.
 Model airplanes are sized down models of an aircraft  The calculations are easy and the importance is given to building of the plane.
Non-Linear Models. Non-Linear Growth models many models cannot be transformed into a linear model The Mechanistic Growth Model Equation: or (ignoring.
Lecture 12 Statistical Inference (Estimation) Point and Interval estimation By Aziza Munir.
1 A R E S A eroelastic R enewable E nergy S ystem David Chesnutt, Adam Cofield, Dylan Henderson, Jocelyn Sielski, Brian Spears, Sharleen Teal, Nick Thiessen.
Non-Linear Models. Non-Linear Growth models many models cannot be transformed into a linear model The Mechanistic Growth Model Equation: or (ignoring.
ECE 7800: Renewable Energy Systems
A R E S A ero-elastic R enewable E nergy S ystem David Chesnutt Adam Cofield Dylan Henderson Jocelyn Sielski Brian Spears Sharleen Teal Nick Thiessen.
Questions from Oral Presentations (9.30) TEAM ARES.
Energy, Work, and Machines. What is work?  Put a book over your head, are you working?  Hold a pencil out straight from your body, are you working?
Slide 9- 1 Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Wind Turbine Aerodynamics Section 1 – Basic Principles E-Learning UNESCO ENEA Casaccia - February Fabrizio Sardella.
Graphing Data: Introduction to Basic Graphs Grade 8 M.Cacciotti.
Statistical analysis Outline that error bars are a graphical representation of the variability of data. The knowledge that any individual measurement.
MAE 4291: Senior Design 1 Oral Update Steve Bukowsky Chris Buonocore Anthony Costantini Joshua Gauvin Omar Hayan Michael Hanlon Marco Herrera Ben Holohan.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 13.
Introduction to Control / Performance Flight.
Power Generation from Renewable Energy Sources Fall 2012 Instructor: Xiaodong Chu : Office Tel.:
SECOND-ORDER DIFFERENTIAL EQUATIONS
ELECTRICAL TECHNOLOGY EET 103/4
Tetris Agent Optimization Using Harmony Search Algorithm
Introduction to IWA. The IWA is based on a patented, next generation design called the Internal Wing Aircraft. The concept brings three separate wings.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 13.
Graphing Most people at one time or another during their careers will have to interpret data presented in graphical form. This means of presenting.
Non-Linear Models. Non-Linear Growth models many models cannot be transformed into a linear model The Mechanistic Growth Model Equation: or (ignoring.
Chalmers University of Technology Elementary axial turbine theory –Velocity triangles –Degree of reaction –Blade loading coefficient, flow coefficient.
Chapter 2: Frequency Distributions. Frequency Distributions After collecting data, the first task for a researcher is to organize and simplify the data.
VISCOUS FLOW IN CONDUITS  When we consider viscosity in conduit flows, we must be able to quantify the losses in the flow Fluid Mechanics [ physical.
Aerodynamic forces on the blade, COP, Optimum blade profiles
Flight Investigations TEXT BOOK CHAPTER 16 PAGE
AE 2350 Lecture Notes #9 May 10, 1999 We have looked at.. Airfoil aerodynamics (Chapter 8) Sources of Drag (Chapter 8, 11 and 12) –Look at the figures.
Lab Report & Rubric Exercise. Title Title is descriptive and appropriate for the study conducted Interpret and analyze scientific information.
Dimensional Analysis. Experimentation and modeling are widely used techniques in fluid mechanics.
Prepared by: Samera Samsuddin Sah Biosystems Engineering Programme School of Bioprocess Engineering, Universiti Malaysia Perlis (UniMAP)
The Normal Approximation for Data. History The normal curve was discovered by Abraham de Moivre around Around 1870, the Belgian mathematician Adolph.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 3 Polynomial and Rational Functions Copyright © 2013, 2009, 2005 Pearson Education, Inc.
Mechanics Topic 2.3 Work, Energy and Power. Learning Outcomes 2.3.1Outline what is meant by work Determine the work done by a non-constant force.
Chapter 15 Forecasting. Forecasting Methods n Forecasting methods can be classified as qualitative or quantitative. n Such methods are appropriate when.
Airfoils, Lift and Bernoulli’s Principle
Precalculus Fifth Edition Mathematics for Calculus James Stewart Lothar Redlin Saleem Watson.
Control engineering ( ) Time response of first order system PREPARED BY: Patel Ravindra.
Matching of Propulsion Systems for an Aircraft
Control System Instrumentation
MAE 3291: JUNIOR DESIGN Final Team List Design Showcase Requirements
Using and rearranging the lift calculation
Introduction to Aeronautical Engineering
Presentation transcript:

1 REVIEW OF ASSIGNMENT #3 ARES Channel Wing HPV (3/8 submitted on time)

2 ARES: GOAL AND OBJECTIVES Project Goal: –Increase the performance characteristics and knowledge database of a wind energy system powered by aeroelastic flutter and vortex shedding through research, mathematical modeling, and experimentation. Can you work Aeroelastic Energy Device (AED) into the objective? Excellent project goal, when you put this into a presentation, shorten by getting rid of ‘the’ and extraneous words that you can say Increase performance and knowledge database of a wind-belt energy system, known as Aeroelastic Energy Device (AED), through mathematical modeling and experimentation Objectives: –Mathematically model the Aeroelastic Energy Device (AED) and its power generation –Design and build a functional model (prototype) of the AED –Test the AED in the wind tunnel to obtain voltage readings and thus power –Obtain data to generate a database of information on the AED that examines the power generated as a function of wind speed, belt tension, coil gap, etc.

3 ARES: PRIMARY SPECIFICATIONS Device shall generate power that is conditioned to power small electronic devices such as LEDs, cell phones, and radios –The only purpose of the AED is to generate power for these types of devices, and therefore it should be able to satisfy that requirement Obtain numerical data from wind tunnel testing to determine wind belt characteristics –Little is known about the current AED, the Windbelt ™, and thus it is important to generate a database of information Optimize the relationship between wind speed and belt tension for various belts to tune the AED to an ideal balance that will generate maximum power –This will allow for the determination of which belt works best in which air flow and how to optimize a belt for a specific location How are 2 nd and 3 rd bullets specifications?

4 ARES: SECONDARY SPECIFICATIONS Device should withstand gusts of wind under normal working conditions –Since the AED will be subject to environmental conditions, and thus must be able to withstand high winds and gusts Device should be tuned to operate at maximum efficiency under the most common wind speed for the present location –This is different from maximizing the power curve with respect to belt tension and wind speed because it is taking the location’s characteristics and tuning the belt to that specification rather than finding the specific frequency of the belt that will generate the most power On 2 nd bullet, consider this subtle difference of wording: –“Device should be tuned to operate at maximum efficiency…” –“Device should be tunable to operate at maximum efficiency…” As you learn more about the power-electronics system, add more specifications

5 ARES: METRICS Primary Specifications: –Device must produce 60 mW of power This is corresponding to the estimated power produced by the Humdinger Windbelt™ –Device should work and generate power in a wind speed range of 4 ft/s to 16 ft/s Data obtained from Melbourne wind speeds over a two week time period –Database of characteristics including the variation of power with respect to wind speed, belt tension, coil gap, etc. –How is the last one of these a metric? –Try not to mix units – best solution is to list both. Write report in metric, but put English in parenthesis, e.g., “The AED must produce 60 mW (8x10 -5 HP) of power.” Secondary Specifications –Manufacture belt to withstand a 16 ft/s constant wind Data obtained from typical wind profile in Melbourne –Manufacture belt to withstand a 55 ft/s gust Data obtained from typical wind gusts over a 7 day period in Melbourne As you move ahead with the project, add more specifications related to power system

6 CHANNEL WING: GOAL AND OBJECTIVES Project Goal –The goal of the project is to demonstrate the potential uses of a channel wing aircraft. Channel wing craft possess the potential to take over many, simple roles that would otherwise be filled by expensive and maintenance-intensive rotary-winged craft. It is our intent to prove that channel wings are a viable alternative to helicopters for many roles, primarily by demonstrating controlled VTOL capability. –Too many words – shorten this. Can write as much as you like in a report, but want objective as tight as possible Project Objectives 1.Channel Wing Lift Validation (what does validation mean, is this a goal?) 2.Design Prototype Aircraft 3.Design and Construct Prototype Wing For Testing Purposes 4.Design and Construct Complete Working Prototype 5.Perform Flight Tests Using Prototype Model 6.Refine Prototype Through Wind Tunnel Tests and Construct Dedicated VTOL Aircraft 7.Add Payload for Distinct Missions

7 CHANNEL WING: SPECIFICATIONS Effective Span –One of the greatest obstacles we discovered when trying to perform a simple analysis on a channel wing aircraft is that we had no idea what span to use. We have constructed a 9 in straight wing, a in straight wing and a 9 in channel. We will put all three models into the wind tunnel and by comparing the data we will obtain a dimensionless scaling parameter. This will enable us to satisfactorily approximate a channel of a given diameter to a straight wing of a given span for the same chord. –Great plan, but where is the specification? –Is the specification that a channel wing with 9 inch channel must produce the same aero-forces as a inch wing? –I actually like this better as a project objective: “approximate a channel of a given diameter to a straight wing of a given span for the same chord.”

8 CHANNEL WING: SPECIFICATIONS Effective Span –Metric: The curves for the 9 in and in wings will be compared for consistency. Once we have determined that they can be trusted, we will measure the actual lift force of the channel itself. Since we will know every variable in the lift equation except the span, we can calculate its effective span. Units: Dimensionless Parameter and Span (m) What curves? Weak writing… how will you determine if they can be trusted? Where does ‘trust’ fit in? If you trust the curves – then measure lift force? I know what you are trying to do here, but it needs to be articulated more clearly

9 CHANNEL WING: SPECIFICATIONS VTOL (Vertical Take-off and Landing) This is the main focus of our project. The ability of a Channel Wing to perform VTOL was speculated upon in the 1950’s during the original Channel Wing tests. Since then, several research houses such as the Air Force and Georgia Tech have also suggested that Channel Wings are capable of VTOL. As of now, no one has ever performed this feat and documented the act. The potential of creating a fixed wing aircraft that can perform VTOL is what drew us to this project from the start. We plan to VTOL the aircraft in as light a wind as possible, preferably indoors. The first few trials will be tethered with the remaining trials un-tethered. The maximum altitude at which we will fly vertically and/or hover is dictated by what controller and transmitter we ultimately obtain. Awesome history lesson – great motivation for your project! Where is the specification? Specification: The Florida Tech Channel Wing Prototype Airplane Shall be Capable of Vertical Takeoff

10 CHANNEL WING: SPECIFICATIONS VTOL (Vertical Take-off and Landing) Metric: –Calculate Lift of channel and Thrust of Prop/Motor combo. Calculate angle between the two forces that makes the resultant of those forces equal to the weight of the aircraft. We are aiming for highest L 0 /T 0 possible. Units: Degrees (°) and Force (N) Where do degrees fit into this metric? Is the metric actually non-dimensional, L 0 /T 0 = Force/Force

11 SPECIFICATIONS AS DELIVERABLES Particularly true for research-type projects ARES: –Specify how to operate a wind-belt system, once design is optimized To generate ~ 50 mW of power, a frame that is 0.5 m in length can be employed with 2 cm wide belts When operating in 3 m/s steady wind, use a belt that is 2 cm wide Mylar and adjust the tension to 5 N/m –Think about design specifications vs. operating specifications Channel Wing: –Provide guidelines and specify how to design such aircraft in the future The effective span of a channel wing is  /2 relative to a straight wing The channel wing should be inclined to 15° for VTOL operation

12 MS WORD FEATURES A few features to make report writing easier (shown using MS Word 2003, but also applicable to MS Word 2007) Insert Caption –Figure captions Placed under the figure Succinctly state what the figure is about and reference All capital 1 st letters or sentence case – either way, just be consistent Must refer to all figures, plots, graphs, in the text, and ‘say’ what the figure is showing –Table captions Placed above the table Succinctly state what the table is showing or summarizing All capital 1 st letters or sentence case – either way, just be consistent Refer to and discuss the table in the text Insert Cross-Reference –Best way to refer to figures and tables in the next –Very useful for references Reference style: numerical order or alphabetical order Automatically Generate: –Table of contents: use headings appropriately and set before hand –List of figures –List of tables –List of references

13 HOMEWORK ASSIGNMENT #4: UPDATE Homework Assignment #4: –Provide updated list of references (from completed literature review) and 1 st page of each –With preliminary design in place list all calculations you believe you need to perform at this point Organize list into order of importance Organize list by order of perceived complexity Develop 2-3 simplified analytical models for most ‘complex’ calculations Addition to Assignment #4: –Include an automatically generated Table of Content using your final report outline –Insert a few concept figures and caption them –Insert a table and caption –Insert list of references at end of outline –Put the Table of Contents, List of Figures, and List of Tables on separate pages –Due: September 29