Zheng-Cheng Gu (PI) Z.C. Gu, arXiv:1308.2488 Sanya Dec, 2013 Majorana Ghosts From topological superconductor to the origin of neutrino mass, three generations.

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

Announcements 11/14 Today: 9.6, 9.8 Friday: 10A – 10E Monday: 10F – 10H 9.6 Only do differential cross-section See problem 7.7 to do most of the work for.
Interacting Fermionic and Bosonic Topological Insulators, possible Connection to Standard Model and Gravitational Anomalies Cenke Xu 许岑珂 University of.
Chiral freedom and the scale of weak interactions.
The minimal B-L model naturally realized at TeV scale Yuta Orikasa(SOKENDAI) Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
The classically conformal B-L extended standard model Yuta Orikasa Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
J. Hošek, in “Strong Coupling Gauge Theories in LHC Era”, World Scientific 2011 (arXiv: ) P. Beneš, J. Hošek, A. Smetana, arXiv: A.
Compelling Questions of High Energy Physics? What does the future hold? Persis S. Drell Physics Department Cornell University.
Lecture 10: Standard Model Lagrangian The Standard Model Lagrangian is obtained by imposing three local gauge invariances on the quark and lepton field.
Brian Meadows, U. Cincinnati Discrete Symmetries Noether’s theorem – (para-phrased) “A symmetry in an interaction Lagrangian corresponds to a conserved.
Lattice Spinor Gravity Lattice Spinor Gravity. Quantum gravity Quantum field theory Quantum field theory Functional integral formulation Functional integral.
May 25, 2004Kakizaki, Mitsuru1 Flavor structure in supersymmetric models Kakizaki, Mitsuru (ICRR, University of Tokyo) May 25, 2004 We proposed a new alignment.
1 Interacting Higher Spins on AdS(D) Mirian Tsulaia University of Crete.
Chiral freedom and the scale of weak interactions.
Fermion Masses and Unification Steve King University of Southampton.
Fermion Masses and Unification Lecture I Fermion Masses and Mixings Lecture II Unification Lecture III Family Symmetry and Unification Lecture IV SU(3),
V (  )  ½    2 + ¼  4 A translation  (x) =  0 + u(x) → u(x) ≡  (x) –  0 V (  )  V (u +   )  ½   (u +   ) 2 + ¼ (u +   ) 4 selects.
Chiral freedom and the scale of weak interactions.
CUSTODIAL SYMMETRY IN THE STANDARD MODEL AND BEYOND V. Pleitez Instituto de Física Teórica/UNESP Modern Trends in Field Theory João Pessoa ─ Setembro 2006.
The Ideas of Unified Theories of Physics Tareq Ahmed Mokhiemer PHYS441 Student.
Chiral freedom and the scale of weak interactions.
The 2008 Nobel Prize in Physics. Symmetries Symmetries often give us a way to characterize how forces interact. Here, a mirror symmetry flips left and.
Aug 29-31, 2005M. Jezabek1 Generation of Quark and Lepton Masses in the Standard Model International WE Heraeus Summer School on Flavour Physics and CP.
Topological Insulators and Beyond
Masses For Gauge Bosons. A few basics on Lagrangians Euler-Lagrange equation then give you the equations of motion:
 Collaboration with Prof. Sin Kyu Kang and Prof. We-Fu Chang arXiv: [hep-ph] submitted to JHEP.
10 lectures. classical physics: a physical system is given by the functions of the coordinates and of the associated momenta – 2.
The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab.
2. Two Higgs Doublets Model
The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab.
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
Fundamental principles of particle physics Our description of the fundamental interactions and particles rests on two fundamental structures :
INVASIONS IN PARTICLE PHYSICS Compton Lectures Autumn 2001 Lecture 8 Dec
Family Symmetry Solution to the SUSY Flavour and CP Problems Plan of talk: I.Family Symmetry II.Solving SUSY Flavour and CP Problems Work with and Michal.
Neutrino oscillation physics Alberto Gago PUCP CTEQ-FERMILAB School 2012 Lima, Perú - PUCP.
Introduction to topological superconductivity and Majorana fermions
Quark Mass Matrix from Dimensional Deconstruction Academia Sinica Andrea Soddu Taipei November 17, 2004 National Taiwan University P.Q Hung, A.S., N.-K.
QFD, Weak Interactions Some Weak Interaction basics
Neutrino mass and DM direct detection Daijiro Suematsu (Kanazawa Univ.) Erice Sept., 2013 Based on the collaboration with S.Kashiwase PRD86 (2012)
Yukawa and scalar interactions induced by scalar relevant for neutrino masss generation are: Since is assumed to be an exact symmetry of the model has.
weak decays beta decay ofneutron problem energy and momentum not conserved e n p.
STANDARD MODEL class of “High Energy Physics Phenomenology” Mikhail Yurov Kyungpook National University November 15 th.
H. Quarks – “the building blocks of the Universe” The number of quarks increased with discoveries of new particles and have reached 6 For unknown reasons.

The inclusion of fermions – J=1/2 particles
Takaaki Nomura(Saitama univ)
ELECTROWEAK UNIFICATION Ryan Clark, Cong Nguyen, Robert Kruse and Blake Watson PHYS-3313, Fall 2013 University of Texas Arlington December 2, 2013.
Supersymmetric B-L Extended Standard Model with Right-Handed Neutrino Dark Matter Nobuchika Okada Miami Fort Lauderdale, Dec , 2010 University.
Monday, Apr. 7, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #20 Monday, Apr. 7, 2003 Dr. Jae Yu Super Symmetry Breaking MSSM Higgs and Their.
BEYOND MFV IN FAMILY SYMMETRY THEORIES OF FERMION MASSES Work done with Zygmunt Lalak and Graham Ross Based on existing ideas but, hopefully, contributing.
SUSY GUT Predictions for Neutrino Oscillation Mu-Chun Chen Brookhaven National Laboratory DUSEL Workshop, January 4-7, 2005 University of Colorado at Boulder.
Physics 222 UCSD/225b UCSB Lecture 12 Chapter 15: The Standard Model of EWK Interactions A large part of today’s lecture is review of what we have already.
M. Frank, K. H., S.K. Rai (arXiv: ) Phys.Rev.D77:015006, 2008 D. Demir, M. Frank, K. H., S.K. Rai, I.Turan ( arXiv: ) Phys.Rev.D78:035013,
Order parameters and their topological defects in Dirac systems Igor Herbut (Simon Fraser, Vancouver) arXiv: (Tuesday) Bitan Roy (Tallahassee)
1-2 Mass Degeneration in the Leptonic Sector Hiroyuki ISHIDA (Tohoku University) Collaboration with : Takeshi ARAKI (MISC) Ref ; T. Araki and H.I. arXiv.
1 The 5/2 Edge IPAM meeting on Topological Quantum Computing February 26- March 2, 2007 MPA Fisher, with Paul Fendley and Chetan Nayak Motivation: FQHE:
Fundamental principles of particle physics Our description of the fundamental interactions and particles rests on two fundamental structures :
and what we unsuccessfully tried to explain (so far)
Takaaki Nomura(Saitama univ)
Classically conformal B-L extended Standard Model
TeV-Scale Leptogenesis and the LHC
Countries that signed the nuclear arms treaty with Iran
Lecture 10: Standard Model Lagrangian
Handout 9 : The Weak Interaction and V-A
The symmetry of interactions
Methods of Experimental Particle Physics
Neutrino oscillation physics
Neutrino Oscillations
Supersymmetry and Lorentz Invariance as Low-Energy Symmetries
Presentation transcript:

Zheng-Cheng Gu (PI) Z.C. Gu, arXiv: Sanya Dec, 2013 Majorana Ghosts From topological superconductor to the origin of neutrino mass, three generations and their mass mixing

Neutrino Neutrino as a ghost particle: Ghosts hunting: neutrino oscillation Extremely weak interactions with other particles. Almost vanishing rest mass. Billions of neutrinos surrounding us! There exist three generations of (light) neutrinos, identified through their weak doublets: electron, muon and tauon. Weak eigenstates do not coincide with mass eigenstates, oscillation happens during their propagation.

Current experimental progress toward ghost hunting Three-generation mixing matrix: (from Michaelmas Term 2009, Prof Mark Thomson) Recent result CP violation (China) (Canada) (Japan)

Sterile neutrino and see-saw mechanism A direct Majorana mass term for light neutrino is not allowed in Standard Model(SM) since it breaks electroweak symmetry. Standard mode predicts exactly zero mass for neutrino! GUT scale Why it is so massive and where does the mass come from? How to explain the experimental mass mixing textures from a simple principle at leading order? We assume that mass and mass mixing of light neutrinos are induced through see-saw mechanism. See-saw mechanism and heavy sterile neutrino. M. Gell-Mann, P. Ramond, and R. Slansky(1979), T. Yanagida(1979) S. Wienberg(1979), R. N. Mohapatra and G. Senjanovic(1980) Require neutrino to be a Majorana fermion!

An elegant proposal by Ettore Majorana Real solution of Dirac equation(in standard representation) Try to understand the origin of neutrino masses, three generations and compute their mass mixing matrix by investigating the topological nature of a Majorana fermion. We refer a topological Majorana fermion formed by four Majorana zero modes as a Majorana ghost. The main goal of this talk: Neutrinos are promising candidates. But why there are three generations and where do those mystery mixing angles come from?

Majorana zero mode: the concept of half degree of freedom Majorana zero mode in the ends Kitaev's Majorana Chain A. Kitaev (2001) Majorana zero mode in vortex core of 2D p+ip TSC N. Read and Green, Phys. Rev. B 61, (2000). A single Majorana zero mode contains half degree of freedom = half (spinless) fermion

Time reversal symmetry of Majorana zero modes Boson has T 2 =1 time reversal symmetry. Fermion=half boson, thus it has T 2 =-1 time reversal symmetry. Majorana zero modes=half fermion, thus it has T 4 =-1 time reversal symmetry. Time reversal symmetry is arguably an unbroken symmetry in a fundamental theory(e.g., it is a local symmetry in quantum gravity), regardless of its spontaneous broken in Standard Model at low energy.

A toy model Two copies of Kitaev's Majorana chains withT 2 =-1 time reversal symmetry At first glance, the Majorana spinon is just a Kramers doublet with T 2 =-1. It is incorrect since such a definition will lead to T 2 =1 on a physical site. leads to: time reversal symmetry:

T 4 =-1 time reversal symmetry The classification of 1D (symmetry protected) topological orders leads to the T 4 =-1 time reversal symmetry. Local Hilbert space for a many body fermion system: The edge Majorana modes should carry projective representation with T 4 =-1 T 2 =-1for fermion parity odd sector and T 2 =1 for fermion parity even sector. The total symmetry group is extended over fermion parity symmetry group {I,P f }, which is indeed T 4 =1. (X. Chen, Z. C. Gu and X.G. Wen,Phys. Rev. B 84, (2011)) (X. Chen, Z. C. Gu and X.G. Wen Phys. Rev. B 83, (2011)) Left end: Right end:

Representation theory Majorana ghosts arise on the edge: Projective representation(must be two dimensional):

Majorana zero modes in higher dimensions The Majorana zero modes inside the vortex core of a 2D T 2 =-1 symmetry protected topological superconductor (Qi et al, 2008, S Ryu et al, Kitaev, 2009) What happens if we assume that neutrinos are Lorentz spinons formed by four Majorana zero modes? Majorana zero modes inside the Hedgehogs of a 3D T 2 =-1 symmetry protected topological superconductor. (in progress, with Kai Sun et al)

A lattice model with Lorentz symmetry at low energy T 4 =-1 A (Lorentz) Majorana fermion per unit cell

P 4 =-1 parity symmetry for Majorana zero modes We can define a P 4 =-1 parity symmetry for a pair of Majorana zero modes as well. We only consider the parity action on internal space here, and its spacial action will be included in quantum field theory later. Parity symmetry acts on the spin basis and chiral basis in an expected way.

Nontrivial charge conjugation symmetry for Majorana zero modes Since a Majorana particle does not carry charge, its charge conjugation symmetry must be trivial! To our surprise, it turns out that Majorana ghosts formed by Majorana zero modes can have a nontrivial charge conjugation symmetry. Charge conjugation symmetry acts on the spin basis(particle-hole) and chiral basis(particle-antiparticle) in an expected way.

CPT super algebra for Majorana ghosts The new definition of CPT symmetries commutes with spin rotation The whole CPT algebra can be generalized into the relativistic theory. The action of CPT symmetries on four Majorana zero modes forms a super algebra

Relativistic field theory CPT symmetry for Majorana ghosts the above CPT symmetry satisfies the super algebra.

mass term breaks charge conjugation symmetry! How do the Majorana fields transform under such a new definition of CPT symmetry? A comparison of CPT symmetry for Dirac fields

The origin of neutrino mass The Fifth force: Z 2 gauge interactions in our universe! The nontrivial charge conjugation symmetry(a Z 2 unitary symmetry) can be promoted to a Z 2 gauge symmetry. The origin of neutrino mass can be explained as the spontaneous breaking of charge conjugation symmetry through Anderson-Higgs mechanism. A poor man’s quantum field theory approach-- a theory without regulation at cut-off, but we hope it can describe the right symmetries, which is enough for our purpose of calculating mass mixing.

Why three generations? A simple answer: The number 4 arises because a real Lorentz spinon is made by 4 Majorana zero modes, and the number 2 arises because the local experimental observables are 2 complex fermions: neutrino and anti-neutrino.

The origin of three generations Out of four Majorana zero modes, there are three and only three different ways to form complex fermions, corresponding to the three different projective representations with T 4 =-1, (TP) 4 =-1, (TC) 4 =-1 symmetry for neutrino/anti-neutrino Projective representation for d and f fermion

Three inequivalent Majorana spinons with Lorentz and (super) CPT symmetry

CPT and Lorentz invariant mass term: In Standard Model, we assume three generations of neutrinos have the same representation under CPT. Redefine fields to make them have the same CPT symmetry Mass mixing matrix: For c and f fermion, Lorentz boost is defined as usual while for d fermion, Lorentz boost is defined as:

Neutrino mass mixing matrix consistent with experiment excluded by experiment Symmetry: D 4

GUT scale Prediction of neutrino masses Predictions: Two possible mass patterns from experiment CP violation leads to small splitting for m 1,m 2

Conclusions and future works  Neutrinos as topological Majorana zero modes.  New CPT symmetry for Majorana fields.  The origin of three generations of neutrinos.  The origin of neutrino masses and their mass mixing.  Compute CP violation angle. (to appear, with John Preskill)  Quark CKM matrix. (to appear, with John Preskill)  Realize Standard Model in a lattice model.  Shed new light on quantum gravity.(super cohomology /super tensor category theory)