Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I) 5th.

Slides:



Advertisements
Similar presentations
Differential Calculus (revisited):
Advertisements

1 Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der Elektromagnetischen Feldtheorie I (NFT I) / 8th Lecture / 8. Vorlesung.
Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I) 5th.
Dr.-Ing. René Marklein - EFT I - WS 06/07 - Lecture 8 / Vorlesung 8 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I)
Dr.-Ing. René Marklein - NFT I - Lecture 10 / Vorlesung 10 - WS 2005 / Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden.
Electric Flux Density, Gauss’s Law, and Divergence
VEKTORANALYS Kursvecka 6 övningar. PROBLEM 1 SOLUTION A dipole is formed by two point sources with charge +c and -c Calculate the flux of the dipole.
EE3321 ELECTROMAGENTIC FIELD THEORY
Chapter 2 Electrostatics 2.0 New Notations 2.1 The Electrostatic Field 2.2 Divergence and Curl of Electrostatic Field 2.3 Electric Potential 2.4 Work and.
Phy 213: General Physics III Chapter 23: Gauss’ Law Lecture Notes.
A Mathematical Frame Work to Create Fluid Flow Devices…… P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Conservation Laws for.
EEE340Lecture 081 Example 3-1 Determine the electric field intensity at P (-0.2, 0, -2.3) due to a point charge of +5 (nC) at Q (0.2,0.1,-2.5) Solution.
Fundamentals of Applied Electromagnetics
EEE 340Lecture Spherical Coordinates. EEE 340Lecture 042 A vector in spherical coordinates The local base vectors from a right –handed system.
2-7 Divergence of a Vector Field
2006 Fall MATH 100 Lecture 81 MATH 100 Lecture 19 Triple Integral in cylindrical & spherical coordinate Class 19 Triple Integral in cylindrical & spherical.
Lecture 19 Exam II Average: Lecture 19 Today Brief review of Electrostatics (I) 1.Maxwell equations 2.Charge and current distributions.
Physics 121: Electricity & Magnetism – Lecture 3 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
EEE340Lecture : Power Dissipation and Joule’s Law Circuits Power Fields Power density (5.53)
Lecture 14 Today Orthogonal coordinate systems 1.The Cartesian (rectangular) coordinate system 2.The cylindrical coordinate system 3.The spherical.
Dr.-Ing. René Marklein - NFT I - Lecture 12 / Vorlesung 12 - WS 2005 / Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden.
Coordinate Systems.
1-1 Engineering Electromagnetics Chapter 1: Vector Analysis.
Lecture 13 Basic Laws of Vector Algebra Scalars: e.g. 2 gallons, $1,000, 35ºC Vectors: e.g. velocity: 35mph heading south 3N force toward center.
Lecture 19: Triple Integrals with Cyclindrical Coordinates and Spherical Coordinates, Double Integrals for Surface Area, Vector Fields, and Line Integrals.
Darryl Michael/GE CRD Fields and Waves Lesson 2.1 VECTORS and VECTOR CALCULUS.
Vector calculus 1)Differential length, area and volume
Lecture 4: Boundary Value Problems
Why Study Electromagnetics? What is Electromagnetics?
UNIVERSITI MALAYSIA PERLIS
Chapter 10 Vector Calculus
1 ENE 325 Electromagnetic Fields and Waves Lecture 1 Electrostatics.
Gauss’s Law The electric flux through a closed surface is proportional to the charge enclosed The electric flux through a closed surface is proportional.
MAGNETOSTATIK Ampere’s Law Of Force; Magnetic Flux Density; Lorentz Force; Biot-savart Law; Applications Of Ampere’s Law In Integral Form; Vector Magnetic.
1 Gauss’s Law For r > a Reading: Chapter Gauss’s Law Chapter 28.
Notes 13 ECE 2317 Applied Electricity and Magnetism Prof. D. Wilton
1 ENE 325 Electromagnetic Fields and Waves Lecture 1 Electrostatics.
Dr. Hugh Blanton ENTC Gauss’s Law Dr. Blanton - ENTC Gauss’s Theorem 3 Recall Divergence literally means to get farther apart from a line.
ENE 325 Electromagnetic Fields and Waves Lecture 3 Gauss’s law and applications, Divergence, and Point Form of Gauss’s law 1.
Applied Electricity and Magnetism
President UniversityErwin SitompulEEM 4/1 Dr.-Ing. Erwin Sitompul President University Lecture 4 Engineering Electromagnetics
Divergence and Curl of Electrostatic Fields Field of a point charge arrowsfield lines:
Electric Field Define electric field, which is independent of the test charge, q, and depends only on position in space: dipole One is > 0, the other
Gauss’s Law Electric Flux Gauss’s Law Examples. Gauss’s Law What’s in the box ??
1 Vector Calculus. Copyright © 2007 Oxford University Press Elements of Electromagnetics Fourth Edition Sadiku2 Figure 3.1 Differential elements in the.
A Mathematical Frame Work to Create Fluid Flow Devices…… P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Development of Conservation.
3/21/20161 ELECTRICITY AND MAGNETISM Phy 220 Chapter2: Gauss’s Law.
CALCULUS III CHAPTER 5: Orthogonal curvilinear coordinates
Review on Coulomb’s Law and the electric field definition
Shree Swami Atmanand Saraswati Institute of Technology
ENE 325 Electromagnetic Fields and Waves Lecture 2 Static Electric Fields and Electric Flux density.
University of Utah Introduction to Electromagnetics Lecture 14: Vectors and Coordinate Systems Dr. Cynthia Furse University of Utah Department of Electrical.
Lecture 19 Flux in Cartesian Coordinates.
ECE 305 Electromagnetic Theory
Agenda Phys 121 Common Exam 1 Review
ENE 325 Electromagnetic Fields and Waves
Electromagnetics II.
ECE 305 Electromagnetic Theory
Fields and Waves I Lecture 8 K. A. Connor Y. Maréchal
ENE/EIE 325 Electromagnetic Fields and Waves
Electricity and Magnetism INEL 4151
Lecture 19 Maxwell equations E: electric field intensity
ENE 325 Electromagnetic Fields and Waves
G L Pollack and D R Stump Electromagnetism
Agenda Phys 121 Common Exam 1 Reviews
Gauss’s Law Chapter 24.
Electrostatic Boundary Value Problems Ref: Elements of Electromagnetics by Matthew N. O. Sadiku.
Lecture 17 Today Divergence of a vector filed
Fundamentals of Applied Electromagnetics
Review Chapter 1-8 in Jackson
Presentation transcript:

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I) 5th Lecture / 5. Vorlesung University of Kassel Dept. Electrical Engineering / Computer Science (FB 16) Electromagnetic Field Theory (FG TET) Wilhelmshöher Allee 71 Office: Room 2113 / 2115 D Kassel Universität Kassel Fachbereich Elektrotechnik / Informatik (FB 16) Fachgebiet Theoretische Elektrotechnik (FG TET) Wilhelmshöher Allee 71 Büro: Raum 2113 / 2115 D Kassel Dr.-Ing. René Marklein

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 2 Coulomb’s Law / Coulombsches Gesetz Charles Augustin de Coulomb (1736 – 1806) ES Fields – Electric Points Charge and Electric Field Strength – Coulomb’s Law / ES Felder – Elektrische Punktladung und elektrische Feldstärke – Coulombsches Gesetz

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 3 Electric Field Strength: Force Per Unit Charge / Elektrische Feldstärke: Kraft pro Einheitsladung Electrostatic (ES) Fields / Elektrostatische (ES) Felder: Governing Equations / Grundgleichungen ES Fields – Electric Charge and Electric Field Strength – Coulomb’s Law / ES Felder – Elektrische Ladung und elektrische Feldstärke – Coulombsches Gesetz Electric Test Charge / Elektrische Testladung Move … / Bewege... Radial Field / Radialfeld Electric Test Charge / Elektrische Testladung

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 4 Electric Field Strength: Force Per Unit Charge / Elektrische Feldstärke: Kraft pro Einheitsladung Electrostatic (ES) Fields / Elektrostatische (ES) Felder: Governing Equations / Grundgleichungen ES Fields – Electric Charge and Electric Field Strength – Coulomb’s Law / ES Felder – Elektrische Ladung und elektrische Feldstärke – Coulombsches Gesetz Radial Field / Radialfeld

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 5 Integral Form /Differential Form / IntegralformDifferentialform Curl-Free E -Field / Rotationsfreies E -Feld Divergence of D Represents Electric Charge Density / Quellstärke von D entspricht der elektrischen Raumladungsdichte Method of Gauss’ Electric Law / Methode des Gaußschen elektrischen Gesetzes Electrostatic (ES) Fields / Elektrostatische (ES) Felder: Governing Equations / Grundgleichungen Electrostatic (ES) Fields – Governing Equations / Elektrostatische (ES) Felder – Grundgleichungen Electrostatic / Elektrostatik No Time Dependence and No Magnetic Field Quantities / Keine Zeitabhängigkeit und keine magnetischen Feldgrößen

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 6 Source Distribution / Quellverteilung Source Volume / Quellvolumen Integration Contour / Integrationskontur ES Fields – Method of Electric Gauss’ Law / ES-Felder – Methode des elektrischen Gaußschen Gesetzes

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 7 Source Distribution / Quellverteilung Source Volume / Quellvolumen Integration Volume / Integrationsvolumen ES Fields – Method of Electric Gauss’ Law / ES-Felder – Methode des elektrischen Gaußschen Gesetzes

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 8 Integration Volume / Integrationsvolumen ES Fields / ES Felder Method of Electric Gauss’ Law / Methode des elektrischen Gaußschen Gesetzes ES Fields – Method of Electric Gauss’ Law / ES-Felder – Methode des elektrischen Gaußschen Gesetzes

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 9 Source Volume / Quellvolumen Integration Surface (Closed Surface) / Integrationsfläche (geschlossene Oberfläche) ES Fields / ES Felder Method of Electric Gauss’ Law / Methode des elektrischen Gaußschen Gesetzes Example: Fluid Mechanics – Spring of Water / Beispiel: Strömungsmechanik – Wasserquelle Spring of Water / Wasserquelle Total Flux through the Closed Surface / Gesamtfluss durch die geschlossene Oberfläche

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 10 ES Fields / ES Felder Method of Electric Gauss’ Law - Example / Methode des elektrischen Gaußschen Gesetzes - Beispiel Example: Electric Field Due to Spherically Symmetric Charge Distribution / Beispiel: Elektrisches Feld einer kugelsymmetrischen Raumladungsdichte Prescribed: Electric Charge Density / Vorgegeben: Elektrische Raumladungsdichte Consider the Electrostatic (ES) Case / Betrachte den elektrostatischen (ES) Fall Radial Symmetry / Radialsymmetrie ! Charged Sphere with Radius R 0 / Geladene Kugel mit dem Radius R 0 Solution for D(R) / Lösung für D(R)

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 11 Vector Differential Surface Element / Vektorielles differentielles Flächenelement (1) Definition: Surface / Fläche Surface Parameters / Flächenparameter Position Vector / Ortsvektor Position Vectors / Ortsvektoren Vector Differential Line Elements / Vektorielle differentielle Linienelemente Position Vector / Ortsvektor Tangential Vectors / Tangentialvektoren

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 12 Vector Differential Surface Element / Vektorielles differentielles Flächenelement (2) Vector Differential Line Elements / Vektorielles differentielles Linienelement Scalar Differential Surface Elements / Skalares differentielles Flächenelement Normal Unit-Vector / Normaleneinheitsvektor Vector Differential Surface Element / Vektorielles differentielles Flächenelement

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 13 Gauss’ Electric Law / Gaußsches elektrisches Gesetz Example / Beispiel:

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 14 Example: Sphere with Radius a / Beispiel: Kugel mit Radius a (1)

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 15 Example: Sphere with Radius a / Beispiel: Kugel mit Radius a (2)

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 16 Example: Electric Field Due to Spherically Symmetric Charge Distribution / Beispiel: Elektrisches Feld einer kugelsymmetrischen Raumladungsdichte Electric Charge Density / Elektrische Raumladungsdichte Consider the Electrostatic (ES) Case / Betrachte den elektrostatischen Fall Radial Symmetry / Radialsymmetrisch !

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 17 Metric Coefficients / Metrische Koeffizienten Orthogonal Curvilinear Coordinates / Orthogonale Krummlinige Koordinaten Cartesian Coordinates / Kartesische Koordinaten Metric Scaling / Metrische Skalierung

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 18 Cartesian Coordinate System: Coordinate Surfaces, Unit Vectors, Surface Elements and Volume Element / Kartesischen Koordinatensystemen: Koordinatenflächen, Einheitsvektoren, Flächenelemente und Volumenelement

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 19 Cylindrical Coordinate System: Coordinate Surfaces, Unit Vectors, Surface Elements and Volume Element / Zylinderkoordinatensystem: Koordinatenflächen, Einheitsvektoren, Flächenelemente und Volumenelement

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 20 Spherical Coordinate System: Coordinate Surfaces, Unit Vectors, Surface Elements and Volume Element / Kugelkoordinatensystem: Koordinatenflächen, Einheitsvektoren, Flächenelemente und Volumenelement

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 21 Metric Coefficients – Cylindrical Coordinate System / Metrische Koeffizienten – Zylinderkoordinatensystem

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 22 Metric Coefficients – Spherical Coordinate System / Metrische Koeffizienten – Kugelkoordinatensystem

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 23 Metric Coefficients / Metrische Koeffizienten Orthogonal Curvilinear Coordinates / Orthogonale Krummlinige Koordinaten Cartesian Coordinates / Kartesische Koordinaten Metric Coefficients / Metrische Koeffizienten

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 24 Example: Metric Coefficients of the Cartesian Coordinate System / Beispiel: Metrische Koeffizienten des Kartesischen Koordinatensystems Cartesian Coordinate System / Kartesisches Koordinatensystem

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 25 Metric Coefficients / Metrische Koeffizienten Cartesian Coordinate System / Kartesisches Koordinatensystem Cylindrical Coordinate System / Zylinderkoordinatensystem Spherical Coordinate System / Kugelkoordinatensystem

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 26 Metric Coefficients – Cylindrical and Spherical Coordinate System / Metrische Koeffizienten – Zylinder- und Kugelkoordinatensystem

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 27 Metric Coefficients and Vector Differential Line Elements / Metrische Koeffizienten und vektorielle differentielle Linienelemente Cartesian Coordinate System / Kartesisches Koordinatensystem Cylindrical Coordinate System / Zylinderkoordinatensystem Spherical Coordinate System / Kugelkoordinatensystem

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 28 Metric Coefficients and Differential Volume and Surface Elements / Metrische Koeffizienten und differentielle Volumen- und Flächenelemente Cartesian Coordinate System / Kartesisches Koordinatensystem Cylindrical Coordinate System / Zylinderkoordinatensystem Spherical Coordinate System / Kugelkoordinatensystem

Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 5 / Vorlesung 5 29 End of Lecture 5 / Ende der 5. Vorlesung