Cornell University’s Hudson Valley Laboratory, Highland, NY Use of Surround WP ® and Horticultural Oil to Manage Pear Psylla & Fabraea leaf spot P.J. Jentsch.

Slides:



Advertisements
Similar presentations
Particle Film Technology in Agriculture to Reduce Heat Stress and Suppress Disease Michael Glenn Soil Scientist.
Advertisements

USA Raspberry Industry: Trends
Optimizing the use of the codling moth granulovirus: Final Report L. Lacey S. Arthurs R. Fritts R. Behle A. Knight.
Interaction of chemigation timings with efficacy of reduced-risk insecticides and An update on West Coast cranberry variety trials and other pest management.
Insecticide Management of Spotted Wing Drosophila on Small Fruits in Washington State LYNELL K. TANIGOSHI, BEVERLY S. GERDEMAN & HOLLIS SPITLER Washington.
Things Peanut Growers Should Know About Three-Cornered Alfalfa Hoppers Steve L. Brown Extension Entomologist University of Georgia.
Results and lessons learnt from pomefruit activity Use your mouse to see tooltips or to link to more information.
Cecil Tharp MSU Pesticide Education Program Pesticide Education Specialist Department of Animal and Range Montana State University.
Pest Management II: Equipment Selection and Calibration
2007 Sucker Control Trials Regional Growth Regulator Trials MH-Free Sucker Control Trials MH-Free Nozzle Study.
Calibration using the Test Strip Method (Long Hand) Cecil Tharp Pesticide Education Program Montana State University Extension.
Calibration 2014 Wisconsin Pesticide Applicator Training Program University of Wisconsin Extension 1 of 40.
Evaluation of Various Insecticide Regimes in Sweetpotato Production for Sugarcane Beetle Control in the Mid-South Larry Adams 1, Randall Luttrell 1 and.
Ellsworth/UA Integrated Management of Whiteflies in Arizona Peter C. Ellsworth, Ph.D. IPM Specialist, University of Arizona Maricopa, AZ, USA & Steve Naranjo,
Tobacco agent training 2015 Insect management update Hannah Burrack, Jeremy Sloan, and Aurora Toennisson Department of Entomology.
Web Links & Video Clips: New Tools For Teaching Fruit IPM Peter Jentsch Extension Associate – Entomology Mike Fargione Educator – Hudson Valley Regional.
Insecticidal Control of Caterpillar Pests of Cole Crops Alton N. Sparks, Jr. and David G. Riley, University of Georgia, Tifton, Georgia INTRODUCTION Cole.
Use of Biodegradable Mulch for Vegetable Crop Production M. D. Orzolek Dept. of Horticulture The Pennsylvania State University M. D. Orzolek Dept. of Horticulture.
Foliage Pests of Pecan Will Hudson Extension Entomologist.
Benefits and Liabilities Associated with Early Maturity and Determinacy in Cotton.
Equipment Methods The Basic Function of a Sprayer: Distribution & Metering Apply a dilute amount of herbicide (Rate) in a determined volume of water.
Insect Control Field Days Sponsored by the Kansas Fruit Growers Association.
Mating disruption trials for control of Bonagota cranaodes (Lepidoptera: Tortricidae) in apple in Brazil Miryan D.A. Coracini 1, Evaldo F. Vilela 2, Paulo.
Effects of Kaolin Clay (Surround WP) On Blueberry Plants James D. Spiers, Frank B. Matta, Blair Sampson, John B. Braswell, Donna S. Marshall.
Selecting Nozzles while Calibrating Your Field Sprayer Cecil Tharp Pesticide Education Program Montana State University Extension.
Calibrating Homeowner Equipment
“Freeze Protection” Row Covers and Irrigation R. Allen Straw Area Specialist Virginia Cooperative Extension.
Oklahoma State University Greenbug Expert System and “Glance ‘N Go” Sampling for Cereal Aphids: Results of Field Testing Tom A. Royer Department of Entomology.
Three Year Evaluation of High Populations of Reniform Nematode On Yield and Quality of Sweet Potatoes in the Mississippi Delta Larry Adams and Craig Abel.
Jeffrey Vitale Gaspard Vognan Marc Ouattarra Karim Traore Oumar Guigemo Burkina Faso Bollgard II ® Socio-economic Study: Outcomes from 2011 Field Surveys.
PESTICIDE APPLICATION PESTICIDE APPLICATION IN THE GREENHOUSE IN THE GREENHOUSE Punya Nachappa GREENHOUSE MANAGEMENT HORT 6050.
An Integrated Pest Management Program for Turfgrass.
Dispersal of Trichogramma ostriniae in Potatoes Anna V. Chapman, Thomas P. Kuhar, Peter B. Schultz Virginia Polytechnic Institute and State University.
Field Evaluation of Some Biorational Insecticides against Yellowmargined Leaf Beetle, Microtheca ochloroma (Coleoptera: Chrysomelidae) in Organic Crucifer.
Calibration of Sugarcane Sprayers Curtis Rainbolt, Ron Rice, and Les Baucum University of Florida/IFAS.
SPRAY EQUIPMENT Basic Components and Operations. Purposes  Used to apply agricultural chemicals  Spray pressures range from near 0 to over 300 pounds.
Terence Robinson, Alan Lakso, Leo Dominguez, Mario Miranda and Mike Fargione Dept. of Horticulture, Cornell University Geneva, NY Precision Irrigation.
U NDERSTANDING S PRAY D EPOSITION AND M INIMIZING D RIFT Dan Heider University of Wisconsin - IPM.
Entomopathogenic nematodes for control of overwintering codling moth in orchards L. A. Lacey, H. L. Headrick, S. P. Arthurs and T. R. Unruh USDA-ARS, Yakima.
Kansas State University Biological and Agricultural Engineering Department Spray Droplet Analysis of Air Induction/Venturi Nozzles Using WRK’s DropletScan.
Insect Control Spectrum of AERIS TM Seed-Applied System.
Funded by an annual grant from the Northwest Center For Small Fruit Research Acknowledgments Biology and Control of Blueberry.
UTILIZATION OF CROP SENSORS TO DETECT COTTON GROWTH AND N NUTRITION
IPM Management Strategies for Field Corn Joyce Meader Cooperative Extension System University of Connecticut.
APHID DAMAGE AND CONTROL Will Hudson and Jim Dutcher University of Georgia.
Managing Difficult to Control Tarnished Plant Bugs Jeff Gore – USDA-ARS, Stoneville.
Development of Vegetation Indices as Economic Thresholds for Control of Defoliating Insects of Soybean James BoardVijay MakaRandy PriceDina KnightMatthew.
Calibrating Your Field Sprayer
Objectives To evaluate the effects of two simulated drift rates of 2,4-D on non-tolerant cotton at various stages of development. 1 Chandler P. Rowe, 1.
CKSFERTILIZERS. ABN pH Modifiers Internationally there are many acidifying agents or pH modifiers that act to bind or inhibit ammonia.
Calibrating Spray Equipment
Curtis Rainbolt Everglades REC University of Florida
©2005 copyright, FMC Corporation. FMC confidential. Carbine TM 50WG (flonicamid) 2006 Field Efficacy Results Craig Heim Henry R. Mitchell Yemel Ortega.
Sucker Control Trials The Regional Sucker Control Trials are conducted under the auspices of the Regional Growth Regulator Committee of the Tobacco Worker’s.
Insecticide Efficacy of Foliar Applications for Tarnished Plant Bug and Other Key Insect Pests of Cotton in the Mississippi Delta Dr. James Robbins Delta.
Sprayer prescriptions for protectant sprays on spring canopies Robyn Gaskin, Dave Manktelow, Bill May, Kevin Steele & Rebecca van Leeuwen.
Late Spring/Early Summer Pests:  Elongate Hemlock Scale  Bag Worm  Cryptomeria Scale January 26,
Spray Drift Reduction Practices John Nowatzki Extension Ag Machine Systems Specialist.
Tobacco Insect Management 2016 Update
Neelendra K. Joshi1 2, David Biddinger1 and Edwin G. Rajotte2
Selecting the Right Nozzle SIC KNOWLEDGE--
Brown Stink Bug Insecticide Trials
White Grub 60 species Phyllophaga criteria most common
Update on PLH Resistant Alfalfa
Precision Agriculture in Pest Management
What is Early Maturity and Determinacy?
Application Strategies to Improve Crop Health
Influence of Adjuvants on Leafspot Disease Management
PEANUT RESPONSE TO MULTIPLE SIMULATED OFF-TARGET
Presentation transcript:

Cornell University’s Hudson Valley Laboratory, Highland, NY Use of Surround WP ® and Horticultural Oil to Manage Pear Psylla & Fabraea leaf spot P.J. Jentsch Cornell University’s Hudson Valley Laboratory, Highland, NY Overview Pear production in NYS is managed on nearly 2000 acres, with crop yields producing roughly 16,500 tons, valued at 3.85 million dollars. In the Hudson Valley region, pears comprise about 800 acres (USDA, 2005). The principle pests of pear production in the Northeastern US are pear psylla, Cacopsylla pyricola (Foerster) (Image 1), and Fabraea leaf spot, Fabraea maculata (Image 2). These two pests cause premature defoliation, reduced size, quality, yield, premature decline of susceptible varieties (Image 3 & 4). Development of insecticide resistance to the insecticides, such as the OP’s, carbamates & pyrethroid classes, has resulted in lower levels of pear psylla susceptibility to conventional controls, reducing effectiveness of current pest management strategies. Recent studies conducted at Cornell University’s Hudson Valley Laboratory (HVL) have demonstrated excellent control of the pear psylla using two unique OMRI products. The kaolin clay product Surround WP (anhydrous aluminum silicate) applied pre-bloom and petal fall and highly refined horticultural oils (HRO’s) applied 1% dilute (1 gallon in 99 gallons of actual sprayed material) in post bloom seasonal programs maintained psylla populations below economic thresholds of 1 nymph per leaf. Furthermore, we observed applications of HRO’s suppressing Fabraea leaf spotting with subsequent reduction in defoliation compared to untreated trees. The need for season long management of Fabraea using fungicide applications at ten day to two-week intervals reduces the additional application costs of bi-weekly HRO applications for post bloom pear psylla management through the incorporation of HRO's when tank mixed to the fungicide program. Research Objectives To determine the efficacy of OMRI materials on populations of pear psylla throughout the season in a comparative commercial orchard and controlled research field plot study. Procedure Treatments for the control of pear psylla and defoliation induced by psylla and Fabraea on European pear varieties of Bartlet and Bosc were made in a commercial pear orchard (LM Clarke, in Milton, NY) divided into nine plots (Table 1a), applied using conventional equipment, and a one-acre experimental pear orchard at Cornell University’s Hudson Valley Laboratory in Highland, NY contained two OMRI plots (Table 2), applied with tractor mounted pecan handgun at 300 psi. dilute to drip. Both sites had commercial standards and untreated controls. In the commercial site, applications were made using a tractor mounted three-point hitch PTO powered airblast sprayer using flip hollow cone (HC) or air induction (AIN) nozzles, trees spaced 12’H x 10’W on 22’ row middles. Two travel speeds, two volume outputs and two nozzle types evaluating deposition, distribution, droplet size and off- target drift were evaluated. OMRI program application timing coinsided with the onset of egg deposition by overwintering adults on 20 March, Bosc petal fall on 4 May, 2nd generation egg deposition on 17 May, nymph hatch on 1 June, and 3rd generation egg deposition on 1 July (Table 1b). Psylla 3rd - 4th generations declined due to natural causes. Results In 2010 we experienced relatively dry conditions, conducive for long residual of OMRI materials, requiring fewer applications than in ‘wet years’. Using the OMRI program we achieved control of the adult and egg form, comparable to the commercial standard (Graphs 1 & 2). All OMRI program plots achieved greater degrees of control of the pear psylla nymph than did the commercial standard (Graphs 3). We did not observe dramatic differences between hollow cone nozzles and air induction nozzles across plots. The general trend we did observe was a greater degree of control using slower tractor speeds (1.25 mph vs. 2.5 mph) and higher application gallonage (200 GPA vs. 100 GPA). Applications made using handgun treatments to our research plots at the HVL provided data for defoliation assessments (Table 2). We observed statistically lower levels of defoliation using the OMRI programs of Surround WP and 1% dilute oil than the commercial standard or untreated control (UTC). Conclusion From the first year use of this strategy in commercial pear insect management, we found the use of the OMRI programs using 2 early season applications of Surround WP at 50 lb./A followed by 3 mid to late season 1% dilute oil applications comparable in pear psylla management to the 3 grower applied in 2 conventional treatments of pyrethroids, followed by a single or a multiple AgriMek application at a 21d interval. The OMRI program provides an effective synthetic insecticide replacement strategy, to reduce the potential for insecticide resistance development in either conventional or organically grown pear. The need for management of Fabraea maculata using 10 day to two week fungicide intervals reduces the cost of HRO management of pear psylla when applied as a tank mix. Material costs for growers transitioning into using barrier film and HMO’s showed a 24% savings in 2010 over the conventional program. Lower levels of defoliation occur using HRO’s, providing more photosynthate and better over wintering conditions. Use of Surround WP and mid-season HRO’s in Northeastern and Pennsylvania pear management appears to be gaining favor in commercial orchards. Although results of the study show promise for the use of OMRI products as replacements for synthethic materials in pear pest management programs, additional testing for multiple years should be completed to determine the commercial efficacy of kaolin clay and HRO’s to control pear psylla in years of normal or excessive rainfall while evaluating its ability to reduce Fabraea maculata under adverse environmental conditions Clarks Orchard, Milton, NY HVL, Highland, NY Funded by: 2010 Pear Psylla Management Trial Commercial Spray Schedule Commercial Farm Data 1. Asana XL/ oil; AgriMek 20.0 oz. / oil (2 Appl.) HC 2.5 mph 2. Asana XL / oil; AgriMek 20.0 oz. / oil (1 Appl.) HC 2.5 mph 3. Surround WP 50 lb./A ; 1% oil 100 GPA HC 1.25 mph 4. Surround WP 50 lb./A ; 1% oil 200 GPA HC 1.25 mph 5. Surround WP 50 lb./A ; 1% oil 100 GPA HC 2.50 mph 6. Surround WP 50 lb./A ; 1% oil 100 GPA AIN 1.25 mph 7. Surround WP 50 lb./A ; 1% oil 100 GPA AIN 2.50 mph 8. Surround WP 50 lb./A ; 1% oil 200 GPA AIN 1.25 mph 9. Untreated HC = Hollow Cone; AIN = Air Induction Nozzle; Trmts 1 & 100 GPA 2010 HVL Research Data Image 3. Season long pear psylla and Fabraea control (left), complete defoliation in untreated Bosc (right). Table 2 Graph 2 Graph 1 Graph 3 Table 1a Table 1b Image 4. Early instar nymph secrete ‘Honey Dew’, acts as substrate for sooty mold on foliage and fruit causing darkened raised lenticels, leaf scortch and blackened fruit blotching.