Ryan O’Donnell & Yi Wu Carnegie Mellon University (aka, Conditional hardness for satisfiable 3-CSPs)

Slides:



Advertisements
Similar presentations
Hardness of Reconstructing Multivariate Polynomials. Parikshit Gopalan U. Washington Parikshit Gopalan U. Washington Subhash Khot NYU/Gatech Rishi Saket.
Advertisements

Parallel Repetition of Two Prover Games Ran Raz Weizmann Institute and IAS.
Ryan Donnell Carnegie Mellon University O. 1. Describe some TCS results requiring variants of the Central Limit Theorem. Talk Outline 2. Show a flexible.
Direct-Product testing Parallel Repetitions And Foams Avi Wigderson IAS.
How to Round Any CSP Prasad Raghavendra University of Washington, Seattle David Steurer, Princeton University (In Principle)
Subhash Khot IAS Elchanan Mossel UC Berkeley Guy Kindler DIMACS Ryan O’Donnell IAS.
Inapproximability of Hypergraph Vertex-Cover. A k-uniform hypergraph H= : V – a set of vertices E - a collection of k-element subsets of V Example: k=3.
Inapproximability of MAX-CUT Khot,Kindler,Mossel and O ’ Donnell Moshe Ben Nehemia June 05.
Gillat Kol joint work with Ran Raz Locally Testable Codes Analogues to the Unique Games Conjecture Do Not Exist.
Dana Moshkovitz MIT Joint work with Subhash Khot, NYU 1.
The Max-Cut problem: Election recounts? Majority vs. Electoral College? 7812.
Hardness of Robust Graph Isomorphism, Lasserre Gaps, and Asymmetry of Random Graphs Ryan O’Donnell (CMU) John Wright (CMU) Chenggang Wu (Tsinghua) Yuan.
Inapproximability Seminar – 2005 David Arnon  March 3, 2005 Some Optimal Inapproximability Results Johan Håstad Royal Institute of Technology, Sweden.
Gillat Kol joint work with Irit Dinur Covering CSPs.
MaxClique Inapproximability Seminar on HARDNESS OF APPROXIMATION PROBLEMS by Dr. Irit Dinur Presented by Rica Gonen.
Prasad Raghavendra University of Washington Seattle Optimal Algorithms and Inapproximability Results for Every CSP?
1 NP-Complete Problems. 2 We discuss some hard problems:  how hard? (computational complexity)  what makes them hard?  any solutions? Definitions 
Constraint Satisfaction over a Non-Boolean Domain Approximation Algorithms and Unique Games Hardness Venkatesan Guruswami Prasad Raghavendra University.
3-Query Dictator Testing Ryan O’Donnell Carnegie Mellon University joint work with Yi Wu TexPoint fonts used in EMF. Read the TexPoint manual before you.
Dana Moshkovitz. Back to NP L  NP iff members have short, efficiently checkable, certificates of membership. Is  satisfiable?  x 1 = truex 11 = true.
Conditional Inapproximability and Limited Independence
Two Query PCP with Subconstant Error Dana Moshkovitz Princeton University and The Institute for Advanced Study Ran Raz The Weizmann Institute 1.
Probabilistically Checkable Proofs (and inapproximability) Irit Dinur, Weizmann open day, May 1 st 2009.
Introduction to PCP and Hardness of Approximation Dana Moshkovitz Princeton University and The Institute for Advanced Study 1.
A 3-Query PCP over integers a.k.a Solving Sparse Linear Systems Prasad Raghavendra Venkatesan Guruswami.
1/17 Optimal Long Test with One Free Bit Nikhil Bansal (IBM) Subhash Khot (NYU)
Gillat Kol joint work with Ran Raz Locally Testable Codes Analogues to the Unique Games Conjecture Do Not Exist.
Inapproximability from different hardness assumptions Prahladh Harsha TIFR 2011 School on Approximability.
Thomas Holenstein Microsoft Research, SVC Dagstuhl
Dictator tests and Hardness of approximating Max-Cut-Gain Ryan O’Donnell Carnegie Mellon (includes joint work with Subhash Khot of Georgia Tech)
1 L is in NP means: There is a language L’ in P and a polynomial p so that L 1 · L 2 means: For some polynomial time computable map r : 8 x: x 2 L 1 iff.
Venkatesan Guruswami (CMU) Yuan Zhou (CMU). Satisfiable CSPs Theorem [Schaefer'78] Only three nontrivial Boolean CSPs for which satisfiability is poly-time.
Computer Assisted Proof of Optimal Approximability Results Uri Zwick Uri Zwick Tel Aviv University SODA’02, January 6-8, San Francisco.
Vol.1: Geometry Subhash Khot IAS Elchanan Mossel UC Berkeley Guy Kindler DIMACS Ryan O’Donnell IAS.
Ryan O'Donnell (CMU, IAS) Yi Wu (CMU, IBM) Yuan Zhou (CMU)
Ryan ’Donnell Carnegie Mellon University O. Ryan ’Donnell Carnegie Mellon University.
Theory of Computing Lecture 19 MAS 714 Hartmut Klauck.
1 Hardness Result for MAX-3SAT This lecture is given by: Limor Ben Efraim.
Dana Moshkovitz, MIT Joint work with Subhash Khot, NYU.
A Counterexample to Strong Parallel Repetition Ran Raz Weizmann Institute.
1 L is in NP means: There is a language L’ in P and a polynomial p so that L 1 ≤ L 2 means: For some polynomial time computable map r : x: x L 1 iff r(x)
Bypassing the Unique Games Conjecture for two geometric problems Yi Wu IBM Almaden Research Based on joint work with Venkatesan Guruswami Prasad Raghavendra.
Ryan O’Donnell Carnegie Mellon University. Part 1: A. Fourier expansion basics B. Concepts: Bias, Influences, Noise Sensitivity C. Kalai’s proof of Arrow’s.
Sub-Constant Error Low Degree Test of Almost-Linear Size Dana Moshkovitz Weizmann Institute Ran Raz Weizmann Institute.
Ryan ’Donnell Carnegie Mellon University O. f : {−1, 1} n → {−1, 1} is “quasirandom” iff fixing O(1) input coords changes E[f(x)] by only o (1)
Direct-product testing, and a new 2-query PCP Russell Impagliazzo (IAS & UCSD) Valentine Kabanets (SFU) Avi Wigderson (IAS)
Generic Conversion of SDP gaps to Dictatorship Test (for Max Cut) Venkatesan Guruswami Fields Institute Summer School June 2011 (Slides borrowed from Prasad.
1/19 Minimizing weighted completion time with precedence constraints Nikhil Bansal (IBM) Subhash Khot (NYU)
Non-Approximability Results. Summary -Gap technique -Examples: MINIMUM GRAPH COLORING, MINIMUM TSP, MINIMUM BIN PACKING -The PCP theorem -Application:
Sarah R. Allen Ryan O’Donnell David Witmer Carnegie Mellon University.
Umans Complexity Theory Lectures Lecture 7b: Randomization in Communication Complexity.
1 How to establish NP-hardness Lemma: If L 1 is NP-hard and L 1 ≤ L 2 then L 2 is NP-hard.
Unique Games Approximation Amit Weinstein Complexity Seminar, Fall 2006 Based on: “Near Optimal Algorithms for Unique Games" by M. Charikar, K. Makarychev,
CS151 Complexity Theory Lecture 16 May 20, The outer verifier Theorem: NP  PCP[log n, polylog n] Proof (first steps): –define: Polynomial Constraint.
Probabilistic verification Mario Szegedy, Rutgers www/cs.rutgers.edu/~szegedy/07540 Lecture 1.
Prasad Raghavendra Georgia Institute of Technology, Atlanta, GA Complexity of Constraint Satisfaction Problems Exact and Approximate TexPoint fonts used.
Yuan Zhou, Ryan O’Donnell Carnegie Mellon University.
Hardness of Hyper-Graph Coloring Irit Dinur NEC Joint work with Oded Regev and Cliff Smyth.
NP ⊆ PCP(n 3, 1) Theory of Computation. NP ⊆ PCP(n 3,1) What is that? NP ⊆ PCP(n 3,1) What is that?
Umans Complexity Theory Lecturess Lecture 11: Randomness Extractors.
CS151 Complexity Theory Lecture 15 May 18, Gap producing reductions Main purpose: –r-approximation algorithm for L 2 distinguishes between f(yes)
Dana Moshkovitz The Institute For Advanced Study
Noise stability of functions with low influences:
Subhash Khot Dept of Computer Science NYU-Courant & Georgia Tech
Linear sketching with parities
Venkatesan Guruswami Yuan Zhou (Carnegie Mellon University)
Linear sketching over
Introduction to PCP and Hardness of Approximation
Linear sketching with parities
Pseudorandomness: New Results and Applications
Presentation transcript:

Ryan O’Donnell & Yi Wu Carnegie Mellon University (aka, Conditional hardness for satisfiable 3-CSPs)

Zwick’s Conjecture [1997] NP ⊆ naPCP 1,5/8+ (O(log n), 3). “ Every language in NP has a probabilistically checkable proof system of polynomial size in which the verifier queries 3 bits of the proof nonadaptively, accepts correct proofs with probability 1, and accepts incorrect proofs with probability at most 5/8+. ” For all > 0,

Zwick’s Conjecture [1997] NP ⊆ naPCP 1,5/8+ (O(log n), 3). “Given a satisfiable 3CSP, it’s NP-hard to satisfy 5/8+ of the constraints.”

3CSPs ¢ ¢ ¢

Zwick’s Conjecture [1997] NP ⊆ naPCP 1,5/8+ (O(log n), 3). 3: minimal. 1: natural, for proof systems. na: natural, for CSP inapproximability. 5/8:this is the conjecture.

Approximating Satisfiable 3CSPs: 01 [Cook71] NP-hard [Johnson73] In BPP 1/8

Approximating Satisfiable 3CSPs: NP-hard In BPP 1/ [AS92,ALMSS92][Johnson73]

Approximating Satisfiable 3CSPs: NP-hard In BPP [BGS95]

Approximating Satisfiable 3CSPs: NP-hard In BPP [TSSW96][BGS95]

Approximating Satisfiable 3CSPs: NP-hard In BPP.3673/4+ [Håstad97][TSSW96]

Approximating Satisfiable 3CSPs: NP-hard In BPP.5143/4+ [Håstad97][Trevisan97]

Approximating Satisfiable 3CSPs: NP-hard In BPP 5/83/4+ [Håstad97][Zwick97]

Zwick’s Conjecture [1997] NP ⊆ naPCP 1,5/8+ (O(log n), 3). “Given a satisfiable 3CSP, it’s NP-hard to satisfy 5/8+ of the constraints.”

Approximating Satisfiable 3CSPs: NP-hard In BPP 5/83/4+ [Håstad97][Zwick97]

Approximating Satisfiable 3CSPs: NP-hard In BPP 5/820/27+ [KS06][Zwick97]

Approximating Satisfiable 3CSPs: NP-hard In BPP 5/820/27+ [KS06][Zwick97] [OW09] Assuming any Khot “D-to-1 Conjecture”

“Remind me of Khot’s D-to-1 Conjectures?”

Label-Cover: π 1 (V 1 ) = U 4 π 2 (V 3 ) = U 2 π 3 (V 3 ) = U 9 π 4 (V 2 ) = U 4 Input: U i vbls over [m] V i vbls over [Dm] π j maps are D-to-1 Raz’s Theorem: ∀ δ > 0, if m = poly(1/δ) and D = poly(1/δ), then NP-hard to tell sat’ble from δ-sat’ble.

Label-Cover: π 1 (V 1 ) = U 4 π 2 (V 3 ) = U 2 π 3 (V 3 ) = U 9 π 4 (V 2 ) = U 4 Input: U i vbls over [m] V i vbls over [Dm] π j maps are D-to-1 2-to-1 Conjecture [Khot02]: ∀ δ > 0, if m = poly(1/δ) and D = 2, then NP-hard to tell sat’ble from δ-sat’ble.

Label-Cover: π 1 (V 1 ) = U 4 π 2 (V 3 ) = U 2 π 3 (V 3 ) = U 9 π 4 (V 2 ) = U 4 Input: U i vbls over [m] V i vbls over [Dm] π j maps are D-to-1 3-to-1 Conjecture [Khot02]: ∀ δ > 0, if m = poly(1/δ) and D = 3, then NP-hard to tell sat’ble from δ-sat’ble.

Label-Cover: π 1 (V 1 ) = U 4 π 2 (V 3 ) = U 2 π 3 (V 3 ) = U 9 π 4 (V 2 ) = U 4 Input: U i vbls over [m] V i vbls over [Dm] π j maps are D-to to-1 Conjecture [Khot02]: ∀ δ > 0, if m = poly(1/δ) and D = 100, then NP-hard to tell sat’ble from δ-sat’ble.

Label-Cover: π 1 (V 1 ) = U 4 π 2 (V 3 ) = U 2 π 3 (V 3 ) = U 9 π 4 (V 2 ) = U 4 Input: U i vbls over [m] V i vbls over [Dm] π j maps are D-to-1 Unique Games Conjecture [Khot02]: ∀ δ > 0, if m = poly(1/δ) and D = 1, NP-hard to tell (1−δ)-sat’ble from δ-sat’ble.

Conjectures: 2-to-1 ⇒ 3-to-1 ⇒ 4-to-1 ⇒ ⇒ 100-to-1 ⇒ ⇒ poly(1/δ)-to-1 (true) None known comparable with UGC.

Why not use [Raghavendra08]? UGC-based, hence can’t address theory of satisfiable instances Shows Alg/UGC-hard match at some number – but what is the number?

Why not use [Raghavendra08]? Shows Alg/UGC-hard match at some number – but what is the number? UGC-based, hence can’t address theory of satisfiable instances

Challenges Shows Alg/UGC-hard match at some number – but what is the number? UGC-based, hence can’t address theory of satisfiable instances ⇒ Design a 1 vs. 5/8 Dictator Test for D-to-1 ⇒ Overcome perfect correlation, pairwise dependence in Invariance Principle arguments

Take-home message If you can design a Dictator Test that seems to work… … you can make it work.

Challenges Design a 1 vs. 5/8 Dictator Test for D-to-1 Overcome perfect correlation, pairwise dependence in Invariance Principle arguments

Challenges Design a 1 vs. 5/8 Dictator Test for D-to-1 Overcome perfect correlation, pairwise dependence in Invariance Principle arguments

Designing a 1 vs. 5/8 Dictator Test Q: Why is Zwick’s 3CSP alg. stuck at 5/8? A: The “Not-Two” predicate: Linear/random: 5/8 SDP alg: 5/8

Designing a 1 vs. 5/8 Dictator Test Q: (Håstad01) 1 vs. 5/8+ hardness for NTW? The “Not-Two” predicate:

Designing a 1 vs. 5/8 Dictator Test Q: (Håstad01) 1 vs. 5/8+ hardness for NTW? A: (Our main thm.) Yes, assuming D-to-1 Conj. for any const. D < ∞.

Designing a 1 vs. 5/8 Dictator Test [Hås97] gave a 1− vs. 1/2+ Dictator Test for D-to-1, D arbitrary, using XOR. We give a 1 vs. 5/8+ Dictator Test for D-to-1, D constant, using NTW.

D-to-1 Dictator Tests using Φ Somehow pick corr’d strings: x ∈ {0,1} m, y,z ∈ {0,1} Dm. Test whether Φ( f(x), g(y), g(z) ). x=x= y=y= z=z= f ( g (g ( g (g ( m D = 3

D-to-1 Dictator Tests using Φ Completeness: If f is i th Dictator, g is j th Dictator, j matches i, then Pr x,y,z [ Φ( f(x), g(y), g(z) ) ] ≥ c. Soundness: If f and g odd, T 1−η f and T 1−η g have no matching influential variables in common, then Pr x,y,z [ Φ( f(x), g(y), g(z) ) ] ≤ s+.

Completeness: If f is i th Dictator, g is j th Dictator, j matches i, then Pr x,y,z [ Φ( f(x), g(y), g(z) ) ] ≥ c. Soundness: If f and g odd, T 1−η f and T 1−η g have no matching influential variables in common, then Pr x,y,z [ Φ( f(x), g(y), g(z) ) ] ≤ s+. Håstad: Φ = XOR, c = 1−, s = 1/2

Completeness: If f is i th Dictator, g is j th Dictator, j matches i, then Pr x,y,z [ Φ( f(x), g(y), g(z) ) ] ≥ c. Soundness: If f and g odd, T 1−η f and T 1−η g have no matching influential variables in common, then Pr x,y,z [ Φ( f(x), g(y), g(z) ) ] ≤ s+. Us: Φ = NTW, c = 1, s = 5/8

Håstad’s Dictator Test using XOR Somehow pick corr’d strings: x ∈ {0,1} m, y,z ∈ {0,1} Dm. Test whether XOR( f(x), g(y), g(z) ). x=x= y=y= z=z= f ( g (g ( g (g ( m D = 3

Håstad’s Dictator Test using XOR Pick blocks from some dist. on {0,1} x {0,1} D x {0,1} D. Test whether XOR( f(x), g(y), g(z) ). x=x= y=y= z=z= f ( g (g ( g (g ( m D = 3

Håstad’s Dictator Test using XOR Blocks: x 1, y 1,y 2,…,y D unif. random, z i = x 1  y i  1. Test whether XOR( f(x), g(y), g(z) ). x=x= y=y= z=z= f ( g (g ( g (g ( m D = 3

Håstad’s Dictator Test using XOR Blocks: x 1, y 1,y 2,…,y D unif. random, z i = x 1  y i  1. Tweak: Rerandomize each z i with prob. 2. x=x= y=y= z=z= f ( g (g ( g (g ( m D = 3

Completeness: If f is i th Dictator, g is j th Dictator, j matches i, then Pr x,y,z [ Φ( f(x), g(y), g(z) ) ] ≥ c. Soundness: If f and g odd, T 1−η f and T 1−η g have no matching influential variables in common, then Pr x,y,z [ Φ( f(x), g(y), g(z) ) ] ≤ s+. Håstad: Φ = XOR, c = 1−, s = 1/2

Completeness: Each “column” (x i,y j,z j ) satisfies XOR w.p. 1−. Soundness: If f and g odd, T 1−η f and T 1−η g have no matching influential variables in common, then Pr x,y,z [ Φ( f(x), g(y), g(z) ) ] ≤ s+. Håstad: Φ = XOR, c = 1−, s = 1/2

Completeness: Each “column” (x i,y j,z j ) satisfies XOR w.p. 1−. Soundness: “Seems like it should work.” If f = g = Majority, or f = g = Parity then Pr x,y,z [ XOR( f(x), g(y), g(z) ) ] ≤ 1/2+ o(1). Håstad: Φ = XOR, c = 1−, s = 1/2

Håstad’s Dictator Test using XOR At a technical level… Håstad does direct Fourier Analysis. We sketch an Invariance Principle proof which works for D = O(1). (Have to reprove [MOO05,Mos08].)

Håstad’s Dictator Test using XOR Blocks: x 1, y 1,y 2,…,y D unif. random, z i = x 1  y i  1. Tweak: Rerandomize each z i with prob. 2. Within a block, imperfect correlation between x & (y,z). So E[ f(x) g(y) g(z) ] ≈ E[ Tf(x) Tg(y) Tg(z) ]. x=x= y=y= z=z= f ( g (g ( g (g (

Håstad’s Dictator Test using XOR Blocks: x 1, y 1,y 2,…,y D unif. random, z i = x 1  y i  1. Tweak: Rerandomize each z i with prob. 2. Invariance: Tf, Tg have no matching influential vbl. ⇒ can change dist. to anything w/ same 2-wise corr’s. x=x= y=y= z=z= f ( g (g ( g (g (

Håstad’s Dictator Test using XOR Blocks: x 1, y 1,y 2,…,y D unif. random, z i = x 1  y i  1. Then rerandomize x 1. Tweak: Rerandomize each z i with prob. 2. E[ Tf(x) Tg(y) Tg(z) ] = E[ Tf(x) ] E[ Tg(y) Tg(z) ] = 0. x=x= y=y= z=z= f ( g (g ( g (g (

Completeness: Each “column” (x i,y j,z j ) satisfies XOR w.p. 1−. Soundness: “Seems like it should work.” If f = g = Majority, or f = g = Parity then E[ f(x) g(y) g(z) ] ≈ 0. Håstad: Φ = XOR, c = 1−, s = 1/2

Completeness: Each “column” (x i,y j,z j ) satisfies NTW w.p. 1. Soundness: “Seems like it should work.” If f = g = Majority, or f = g = Parity then E[ f(x) g(y) g(z) ] ≈ 0. Us: Φ = NTW, c = 1, s = 5/8

Håstad’s Dictator Test using XOR Blocks: x 1, y 1,y 2,…,y D unif. random, z i = x 1  y i  1. For NTW completeness, okay if “column” is (0,0,0). x=x= y=y= z=z= f ( g (g ( g (g (

Our Dictator Test using NTW Blocks: x 1, y 1,y 2,…,y D unif. random, z i = x 1  y i  1. Tweak: W.p., make a random “column” all = x 1. x=x= y=y= z=z= f ( g (g ( g (g (

Our Dictator Test using NTW Blocks: x 1, y 1,y 2,…,y D unif. random, z i = x 1  y i  1. Tweak: W.p., make a random “column” all = x 1. Unfortunately: perfect correlation between x & (y,z). (Even for D = 2. Imperfect for D = 1, hence [OW09a].) x=x= y=y= z=z= f ( g (g ( g (g (

Our Dictator Test using NTW Blocks: x 1, y 1,y 2,…,y D unif. random, z i = x 1  y i  1. Tweak: W.p., make a random “column” all = x 1. Escape hatch: imperfect correlation between (x,y) & z. So E[ f(x) g(y) g(z) ] ≈ E[ f(x) g(y) Tg(z) ]. x=x= y=y= z=z= f ( g (g ( g (g (

Our Dictator Test using NTW Blocks: x 1, y 1,y 2,…,y D unif. random, z i = x 1  y i  1. Tweak: W.p., make a random “column” all = x 1. Escape hatch: imperfect correlation between (x,y) & z. So E[ f(x) g(y) g(z) ] ≈ E[ f(x) Tg(y) Tg(z) ]. x=x= y=y= z=z= f ( g (g ( g (g (

Our Dictator Test using NTW Blocks: x 1, y 1,y 2,…,y D unif. random, z i = x 1  y i  1. Tweak: W.p., make a random “column” all = x 1. So E[ f(x) g(y) g(z) ] ≈ E[ f(x) Tg(y) Tg(z) ]. Now noise on (y,z) ⇒ as if imperfect corr. for x & (y,z). x=x= y=y= z=z= f ( g (g ( g (g (

Our Dictator Test using NTW Blocks: x 1, y 1,y 2,…,y D unif. random, z i = x 1  y i  1. Tweak: W.p., make a random “column” all = x 1. So E[ f(x) g(y) g(z) ] ≈ E[ f(x) Tg(y) Tg(z) ]. ≈ E[ Tf(x) Tg(y) Tg(z) ]. x=x= y=y= z=z= f ( g (g ( g (g (

Our Dictator Test using NTW Blocks: x 1, y 1,y 2,…,y D unif. random, z i = x 1  y i  1. Tweak: W.p., make a random “column” all = x 1. Invariance: Tf, Tg have no matching influential vbl. ⇒ can change dist. to anything w/ same 2-wise corr’s. x=x= y=y= z=z= f ( g (g ( g (g (

Our Dictator Test using NTW Blocks: x 1, y 1,y 2,…,y D unif. random, z i = x 1  y i  1. Then rerandomize x 1. Tweak: W.p., make a random “column” all = x 1. E[ Tf(x) Tg(y) Tg(z) ] ≈ E[ Tf(x) ] E[ Tg(y) Tg(z) ] = 0. x=x= y=y= z=z= f ( g (g ( g (g (

Take-home message If you can design a Dictator Test that seems to work… … you can make it work.

Open technical problems 1.We need 1 vs. 2 −2 O(D 2 ) hardness for D-to-1. Probably could get away with 2 −poly(D). With 1/poly(D)? 2.Use D-to-1 for other problems. Max-NAE 3 with perfect completeness?