Martin Asplund, Paul Barklem, Andrey Belyaev, Maria Bergemann,

Slides:



Advertisements
Similar presentations
Line Profiles Note - Figure obtained from
Advertisements

Effects of Non-Solar Abundance Ratios on Star Spectra: Comparison of Observations and Models. Overview:-  Importance of element abundances  New measurements.
基于 LAMOST 巡天数据的大样 本 M 巨星搜寻和分类 钟靖 中国科学院上海天文台. M giants Red : surface temperature lower than 4000K Luminous: M J from to mag (Covey et al.2007)
Martin Asplund Galactic archeology & planet formation.
Does the Sun have a subsolar metallicity? Martin Asplund.
Non-Local Thermodynamic Equilibrium By: Christian Johnson.
Classification of Stellar Spectra Essentially all stars appear as point sources. Only differences are brightness and spectra. Many differences in spectra.
Chapter 13 Cont’d – Pressure Effects
Jelena Kova č evi ć Astronomical Observatory Belgrade.
Atmospheres: Empirical or Theoretical ? (some selected) Observed Spectral Libraries GUNN, J.E.; STRYKER, L.L (3130 to Å) JACOBY, G.H., HUNTER,
Microphysics of the radiative transfer. Numerical integration of RT in a simplest case Local Thermodynamical Equilibrium (LTE, all microprocesses are.
Stars science questions Origin of the Elements Mass Loss, Enrichment High Mass Stars Binary Stars.
Physics 681: Solar Physics and Instrumentation – Lecture 10 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
Wavelength flux Spectral energy distributions of bright stars can be used to derive effective temperatures Ay 123 Lecture I - Physical Properties.
Non-LTE abundance analysis: K & Sc Huawei Zhang Department of Astronomy, School of Physics, Peking University.
Convection Simulation of an A-star By Regner Trampedach Mt. Stromlo Observatory, Australian National University 8/19/04.
Compilation of stellar fundamental parameters from literature : high quality observations + primary methods Calibration stars for astrophysical parametrization.
Modelling of spectra and model atmospheres of evolved stars (A talk from the parallel world) Yakiv V.Pavlenko Main astronomical observatory 27 Sabolotnoho,
The LAMOST 1d Spectroscopic Pipeline A-Li LUO LAMOST team, NAOC 2008/12/3 The KIAA-Cambridge Joint Workshop on Near-Field Cosmology and Galactic Archeology.
S PECTRAL LINE ANALYSIS : LOG G Giovanni Catanzaro INAF - Osservatorio Astrofisico di Catania 9 april 2013 Spring School of Spectroscopic Data Analyses.
Stellar Atmospheres: Non-LTE Rate Equations 1 The non-LTE Rate Equations Statistical equations.
A New Technique to Measure ΔY/ΔZ A. A. R. Valcarce (UFRN) Main collaborators: J. R. de Medeiros (UFRN)M. Catelan (PUC) XXXVII SAB meeting Águas de Lindóia,
Stellar Atmospheres II
{ SDSS Timothy C. Beers National Optical Astronomy Observatory The AEGIS Survey (and more …)
Non-LTE in Stars The Sun Early-type stars Other spectral types.
Atomic Spectroscopy for Space Applications: Galactic Evolution l M. P. Ruffoni, J. C. Pickering, G. Nave, C. Allende-Prieto.
APOGEE: The Apache Point Observatory Galactic Evolution Experiment l M. P. Ruffoni 1, J. C. Pickering 1, E. Den Hartog 2, G. Nave 3, J. Lawler 2, C. Allende-Prieto.
Model atmospheres for Red Giant Stars Bertrand Plez GRAAL, Université de Montpellier 2 RED GIANTS AS PROBES OF THE STRUCTURE AND EVOLUTION OF THE MILKY.
The chemical inventory of HH1 Teresa Giannini, Brunella Nisini, Simone Antoniucci, Dario Lorenzetti, Juan Alcala’, Francesca Bacciotti, Sara Bonito, Linda.
Chapter 14 – Chemical Analysis Review of curves of growth How does line strength depend on excitation potential, ionization potential, atmospheric parameters.
High Resolution Spectroscopy of Stars with Planets Won-Seok Kang Seoul National University Sang-Gak Lee, Seoul National University Kang-Min.
Chapter 16 – Chemical Analysis Review of curves of growth –The linear part: The width is set by the thermal width Eqw is proportional to abundance –The.
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
Class Goals Familiarity with basic terms and definitions Physical insight for conditions, parameters, phenomena in stellar atmospheres Appreciation of.
14 N/ 15 N ratios in AGB C-stars and the origin of SiC grains Eurogenesis- Perugia Workshop, Nov 12-14, 2012 C. Abia R. Hedrosa (Granada) B. Plez (Montpellier)
Plasma diagnostics using spectroscopic techniques
1 New Spitzer Results for Neon and Sulphur in NGC 6822 Reggie Dufour AU 10/07/2009.
Abundance Patterns to Probe Stellar Nucleosynthesis and Chemical Evolution Francesca Primas.
A cosmic abundance standard Fernanda Nieva from massive stars in the Solar Neighborhood Norbert Przybilla (Bamberg-Erlangen) & Keith Butler (LMU)
A short review The basic equation of transfer for radiation passing through gas: the change in specific intensity I is equal to: -dI /d  = I - j /  =
Chemical Composition of Planet-Host Stars Wonseok Kang Kyung Hee University Sang-Gak Lee Seoul National University.
Sulfur, manganese … in the Galaxy
Colin Folsom (Armagh Observatory).  Read input  Calculate line components (Zeeman splitting)  Calculate continuum opacity (per window, per atmospheric.
Dr. Alan Alves-Brito ARC Super Science Fellow Red giant stars as tracers of the chemical evolution of the Galactic bulge.
Metallicity and age of selected nearby G-K Giants L. Pasquini (ESO) M. Doellinger (ESO-LMU) J. Setiawan (MPIA) A. Hatzes (TLS), A. Weiss (MPA), O. von.
CW5 Berlin, December 11 th 2003 ABOUT SOME TRAPS 1 About some traps in fundamental parameter determination of target stars Friedrich Kupka Max-Planck-Institute.
INT Solar models Composition, neutrinos & accretion Aldo Serenelli (MPA)
Behavior of Spectral Lines – Part II
Julie Hollek and Chris Lindner.  Background on HK II  Stellar Analysis in Reality  Methodology  Results  Future Work Overview.
1 Model Atmosphere Results (Kurucz 1979, ApJS, 40, 1) Kurucz ATLAS LTE code Line Blanketing Models, Spectra Observational Diagnostics.
Stellar Spectroscopy during Exoplanet Transits Revealing structures across stellar surfaces Dainis Dravins 1, Hans-Günter Ludwig 2, Erik Dahlén 1, Hiva.
L. I. Mashonkina, T.A. Ryabchikova Institute of Astronomy RAS A. N. Ryabtsev Institute of Spectroscopy RAS NLTE ionization equilibrium of Nd II and Nd.
A540 – Stellar Atmospheres Organizational Details Meeting times Textbook Syllabus Projects Homework Topical Presentations Exams Grading Notes.
Chapter 13 Cont’d – Pressure Effects More curves of growth How does the COG depend on excitation potential, ionization potential, atmospheric parameters.
Holtzman: General interests ● Stellar populations – Solar neighborhood star formation history – Local group dwarf star formation histories – M33 star formation.
Hobby-Eberly Telescope Chemical Abundances of Stars in the Halo (CASH) Project: Spectroscopic Analyses of the First ~80 Stars 5 May 2010 Julie Krugler.
Abundance analysis on Late G giants — 59 stars of Xinglong Planet search sample Yujuan Liu( 劉玉娟 ) NAOC/NAOJ Ando H., G. Zhao, Sato Bun’ei, Takeda Y.,
Determining Abundances
Stellar Atmospheres behind Transiting Exoplanets
Chapter 13 – Behavior of Spectral Lines
UVIS Saturn Atmosphere Occultation Prospectus
Lecture 3 Radiative Transfer
Chapter 14 – Chemical Analysis
Non-LTE Models for Hot Stars
Atmospheres of Cool Stars
Chapter 16 – Chemical Analysis
Planetary Nebula abundances in NGC 5128 with FORS
Jiannan Zhang, Yihan Song, Ali Luo NAOC, CHINA
Jeffrey Linsky JILA and APAS Solar Focus Group April 12, 2019
Presentation transcript:

Martin Asplund, Paul Barklem, Andrey Belyaev, Maria Bergemann, 3D and NLTE analysis for large stellar surveys Karin Lind Uppsala University, Sweden Martin Asplund, Paul Barklem, Andrey Belyaev, Maria Bergemann, Remo Collet, Zazralt Magic, Anna Marino, Jorge Meléndez, Yeisson Osorio

Outline Introduction 1D LTE/NLTE Worst-case scenarios Recent progress Calibration techniques Practical implementation Applications 3D LTE/NLTE Observational tests Mg : 1D/<3D>/LTE/NLTE Ca : 1D/<3D>/3D/LTE/NLTE

Motivation Galactic archaeology by chemical tagging of FGK stars Statistics : Soon > 106 stars Precision (S/N, wavelength range) : σ[X/H] < 0.1dex, σTeff<150K, σlog(g)<0.3dex Accuracy (assumptions: 1D, LTE, atomic data) : σ [X/H]< 0.5 dex, σTeff<400K, σlog(g)< 1 dex

Methods Model atmosphere Detailed rad. Transfer 1D/<3D>/3D LTE 1D/3D LTE/NLTE R. Collet

NLTE line formation

(1D) N- Is it really necessary? Is it safe?

Worst-case scenario I NaD lines in metal-poor horisontal branch stars Lind et al. 2011, Marino et al. 2011 B-I

Worst-case scenario II OI 777nm triplet at very low metallicities LTE trend Fabbian et al. 2009

Input data for NLTE analysis Energy levels + oscillator strengths + photo-ionization cross sections Red boxes : have sufficient(?) data Blue boxes : missing e.g. QM photo-ionisation, but NLTE still attempted

Input data for NLTE analysis Blue boxes : QM hydrogen collisions exist or will exist

Input data for NLTE analysis Most important free parameter in NLTE modelling of Fe is FeI+HI collisional cross-section Black – LTE Blue – NLTE with no hydrogen collisions Solar neighborhood MDF Halo MDF [X/Fe] vs [Fe/H]

Calibration techniques: ionisation balance Korn et al. 2003 FeI/FeII ionisation equilibrium calibrated using Hipparcos gravities  S(H)=3

Calibration techniques: excitation balance Bergemann & Gehren 2008 “Thus, NLTE can solve the discrepancy between the abundances derived from the MnI resonance triplet at 403 nm and excited lines, which is found in analyses of metal-poor subdwarfs and subgiants”  S(H)=0.05

Calibration techniques: CLV Allende Prieto et al. (2004) Solar centre-to-limb variation of OI lines

Practical implementation I “Curves-of-growth” from UV-NIR: 3200 FeI lines 107 FeII lines Teff=6500K log(g)=4.0 ξ=2km/s ΔNLTE Lind et al. (2012)

Practical implementation II Pre-computed departure coefficients  NLTE synthesis T. Nordlander

FeI NLTE grid Lind et al. (2012)

Application : metal-poor stars LTE NLTE +PHOT Ruchti et al. (2012)

Application : metal-poor stars LTE NLTE+PHOT Serenelli et al. (2013)

3D (LTE/NLTE) Is it really necessary? Is it safe?

Stagger grid Magic et al. 2014

Abundance patterns 3D N-LTE Keller et al. (2014) Dashed –200 Msun PISN Solid – 60Msun fallback 3D N-LTE

Worst-case scenario III Li isotopic abundances 3D N-LTE Lind et al. 2013 Asplund et al. 2006

Observational tests: the Sun Pereira et al. 2013 “We confronted the models with observational diagnostics of the [solar] temperature profile: continuum centre-to-limb variations (CLVs), absolute continuum fluxes, and the wings of hydrogen lines. We also tested the 3D models for the intensity distribution of the granulation and spectral line shapes. ” “We conclude that the 3D hydrodynamical model is superior to any of the tested 1D models.”

Observational tests: low [Fe/H] Klevas et al. 2013 FeI line assymmetries in the metal-poor giant HD122563

1.5/3D + NLTE LiI : Asplund et al. 2003, Sbordone et al. 2010 OI, FeI : Shchukina et al. 2005 OI : Pereira et al. 2010, Prakapavičius et al. 2013 LiI, NaI, CaI : Lind et al. 2013

Ways forward Model LTE/NLTE Time Performance 1D LTE Seconds NLTE Minutes (seconds using interpolation) 3D Hours Days The ultimate goal, reference point <3D>

Mg b in a VMP SG 1D LTE 1D NLTE <3D> LTE <3D> NLTE “No” free parameters! HD140283 Teff=5780K log(g)=3.7 [Fe/H]=-2.4 1D LTE 1D NLTE <3D> LTE <3D> NLTE Yeisson Osorio

Ca in a VMP dwarf LTE 1D 3D <3D> NLTE HD19445 Teff=6000K log(g)=4.5 [Fe/H]=-2.0

Ca in a VMP dwarf LTE 1D 3D <3D> NLTE HD19445 Teff=6000K log(g)=4.5 [Fe/H]=-2.0

Ca in a EMP TO Start ? Goal G64-12 Teff=6430K log(g)=4.0 [Fe/H]=-3.0 Bullets: Optical CaI lines Squares: NIR CaII triplet

Ca in a EMP TO Start ? Goal Bullets: Optical CaI lines Squares: NIR CaII triplet

Ca in a EMP TO Start ? Goal Bullets: Optical CaI lines Squares: NIR CaII triplet

Ca in a EMP TO Start ? Goal Bullets: Optical CaI lines Squares: NIR CaII triplet

Ca in a EMP TO Start ? Goal Bullets: Optical CaI lines Squares: NIR CaII triplet

Ways forward A : NLTE-sensitive, B : not NLTE-sensitive Model LTE/NLTE Time Performance 1D LTE Seconds Varied NLTE Minutes (seconds using interpolation) Improves for A No change for B 3D Hours May worsen for A Improves for B Days The ultimate goal, reference point <3D>