1 Statistical Methods in HEP, in particular... Nuisance parameters and systematic uncertainties Glen Cowan Royal Holloway, University of London

Slides:



Advertisements
Similar presentations
Bayesian inference “Very much lies in the posterior distribution” Bayesian definition of sufficiency: A statistic T (x 1, …, x n ) is sufficient for 
Advertisements

1 Bayesian statistical methods for parton analyses Glen Cowan Royal Holloway, University of London DIS 2006.
1 LIMITS Why limits? Methods for upper limits Desirable properties Dealing with systematics Feldman-Cousins Recommendations.
Glen Cowan, SCMA4, June, The small-n problem in High Energy Physics Glen Cowan Department of Physics Royal Holloway, University of London.
G. Cowan Statistics for HEP / LAL Orsay, 3-5 January 2012 / Lecture 2 1 Statistical Methods for Particle Physics Lecture 2: Tests based on likelihood ratios.
Statistics In HEP 2 Helge VossHadron Collider Physics Summer School June 8-17, 2011― Statistics in HEP 1 How do we understand/interpret our measurements.
G. Cowan Lectures on Statistical Data Analysis 1 Statistical Data Analysis: Lecture 10 1Probability, Bayes’ theorem, random variables, pdfs 2Functions.
G. Cowan Statistics for HEP / NIKHEF, December 2011 / Lecture 3 1 Statistical Methods for Particle Physics Lecture 3: Limits for Poisson mean: Bayesian.
G. Cowan RHUL Physics Bayesian methods for HEP / DESY Terascale School page 1 Bayesian statistical methods for HEP Terascale Statistics School DESY, Hamburg.
1 Nuisance parameters and systematic uncertainties Glen Cowan Royal Holloway, University of London IoP Half.
G. Cowan RHUL Physics Comment on use of LR for limits page 1 Comment on definition of likelihood ratio for limits ATLAS Statistics Forum CERN, 2 September,
G. Cowan Lectures on Statistical Data Analysis Lecture 12 page 1 Statistical Data Analysis: Lecture 12 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Lectures on Statistical Data Analysis 1 Statistical Data Analysis: Lecture 8 1Probability, Bayes’ theorem, random variables, pdfs 2Functions of.
G. Cowan 2011 CERN Summer Student Lectures on Statistics / Lecture 41 Introduction to Statistics − Day 4 Lecture 1 Probability Random variables, probability.
G. Cowan RHUL Physics Statistical Methods for Particle Physics / 2007 CERN-FNAL HCP School page 1 Statistical Methods for Particle Physics (2) CERN-FNAL.
G. Cowan Lectures on Statistical Data Analysis Lecture 14 page 1 Statistical Data Analysis: Lecture 14 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Lectures on Statistical Data Analysis Lecture 13 page 1 Statistical Data Analysis: Lecture 13 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan RHUL Physics Moriond QCD 2007 page 1 Bayesian analysis and problems with the frequentist approach Rencontres de Moriond (QCD) La Thuile,
Frequently Bayesian The role of probability in data analysis
G. Cowan Lectures on Statistical Data Analysis Lecture 10 page 1 Statistical Data Analysis: Lecture 10 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Lectures on Statistical Data Analysis 1 Statistical Data Analysis: Lecture 7 1Probability, Bayes’ theorem, random variables, pdfs 2Functions of.
G. Cowan Discovery and limits / DESY, 4-7 October 2011 / Lecture 3 1 Statistical Methods for Discovery and Limits Lecture 3: Limits for Poisson mean: Bayesian.
G. Cowan RHUL Physics Bayesian Higgs combination page 1 Bayesian Higgs combination using shapes ATLAS Statistics Meeting CERN, 19 December, 2007 Glen Cowan.
Statistical Analysis of Systematic Errors and Small Signals Reinhard Schwienhorst University of Minnesota 10/26/99.
G. Cowan SUSSP65, St Andrews, August 2009 / Statistical Methods 1 page 1 Statistical Methods in Particle Physics Lecture 1: Bayesian methods SUSSP65.
880.P20 Winter 2006 Richard Kass 1 Confidence Intervals and Upper Limits Confidence intervals (CI) are related to confidence limits (CL). To calculate.
G. Cowan SUSSP65, St Andrews, August 2009 / Statistical Methods 2 page 1 Statistical Methods in Particle Physics Lecture 2: Limits and Discovery.
G. Cowan 2009 CERN Summer Student Lectures on Statistics1 Introduction to Statistics − Day 4 Lecture 1 Probability Random variables, probability densities,
G. Cowan Lectures on Statistical Data Analysis Lecture 3 page 1 Lecture 3 1 Probability (90 min.) Definition, Bayes’ theorem, probability densities and.
G. Cowan Lectures on Statistical Data Analysis Lecture 1 page 1 Lectures on Statistical Data Analysis London Postgraduate Lectures on Particle Physics;
G. Cowan RHUL Physics Bayesian Higgs combination page 1 Bayesian Higgs combination based on event counts (follow-up from 11 May 07) ATLAS Statistics Forum.
G. Cowan, RHUL Physics Discussion on significance page 1 Discussion on significance ATLAS Statistics Forum CERN/Phone, 2 December, 2009 Glen Cowan Physics.
G. Cowan RHUL Physics LR test to determine number of parameters page 1 Likelihood ratio test to determine best number of parameters ATLAS Statistics Forum.
G. Cowan CERN Academic Training 2010 / Statistics for the LHC / Lecture 41 Statistics for the LHC Lecture 4: Bayesian methods and further topics Academic.
1 Introduction to Statistics − Day 4 Glen Cowan Lecture 1 Probability Random variables, probability densities, etc. Lecture 2 Brief catalogue of probability.
1 Methods of Experimental Particle Physics Alexei Safonov Lecture #24.
G. Cowan Lectures on Statistical Data Analysis Lecture 8 page 1 Statistical Data Analysis: Lecture 8 1Probability, Bayes’ theorem 2Random variables and.
1 Introduction to Statistics − Day 3 Glen Cowan Lecture 1 Probability Random variables, probability densities, etc. Brief catalogue of probability densities.
G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 1 Lecture 4 1 Probability (90 min.) Definition, Bayes’ theorem, probability densities and.
G. Cowan CERN-JINR 2009 Summer School / Topics in Statistical Data Analysis page 1 Topics in Statistical Data Analysis for HEP Lecture 1: Bayesian Methods.
G. Cowan Computing and Statistical Data Analysis / Stat 9 1 Computing and Statistical Data Analysis Stat 9: Parameter Estimation, Limits London Postgraduate.
G. Cowan, RHUL Physics Statistics for early physics page 1 Statistics jump-start for early physics ATLAS Statistics Forum EVO/Phone, 4 May, 2010 Glen Cowan.
G. Cowan Systematic uncertainties in statistical data analysis page 1 Systematic uncertainties in statistical data analysis for particle physics DESY Seminar.
G. Cowan Lectures on Statistical Data Analysis Lecture 9 page 1 Statistical Data Analysis: Lecture 9 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Statistical Methods in Particle Physics1 Statistical Methods in Particle Physics Day 5: Bayesian Methods 清华大学高能物理研究中心 2010 年 4 月 12—16 日 Glen.
G. Cowan SUSSP65, St Andrews, August 2009 / Statistical Methods 1 page 1 Statistical Methods in Particle Physics Lecture 1: Bayesian methods SUSSP65.
In Bayesian theory, a test statistics can be defined by taking the ratio of the Bayes factors for the two hypotheses: The ratio measures the probability.
G. Cowan Lectures on Statistical Data Analysis Lecture 12 page 1 Statistical Data Analysis: Lecture 12 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Lectures on Statistical Data Analysis Lecture 10 page 1 Statistical Data Analysis: Lecture 10 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Lectures on Statistical Data Analysis Lecture 5 page 1 Lecture 5 1 Probability Definition, Bayes’ theorem, probability densities and their properties,
G. Cowan RHUL Physics Statistical Issues for Higgs Search page 1 Statistical Issues for Higgs Search ATLAS Statistics Forum CERN, 16 April, 2007 Glen Cowan.
1 Nuisance parameters and systematic uncertainties Glen Cowan Royal Holloway, University of London IoP Half.
G. Cowan SOS 2010 / Statistical Tests and Limits -- lecture 31 Statistical Tests and Limits Lecture 3 IN2P3 School of Statistics Autrans, France 17—21.
G. Cowan SLAC Statistics Meeting / 4-6 June 2012 / Two Developments 1 Two developments in discovery tests: use of weighted Monte Carlo events and an improved.
G. Cowan Lectures on Statistical Data Analysis Lecture 5 page 1 Lecture 5 1 Probability Definition, Bayes’ theorem, probability densities and their properties,
Statistics for HEP Lecture 1: Introduction and basic formalism
Discussion on significance
Statistics for the LHC Lecture 3: Setting limits
Statistical Issues for ATLAS Physics
Lecture 4 1 Probability (90 min.)
Computing and Statistical Data Analysis / Stat 8
TAE 2017 / Statistics Lecture 3
Lecture 3 1 Probability Definition, Bayes’ theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests general.
Lecture 4 1 Probability Definition, Bayes’ theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests general.
Statistics for Particle Physics Lecture 3: Parameter Estimation
Statistical Tests and Limits Lecture 2: Limits
Computing and Statistical Data Analysis / Stat 7
Introduction to Statistics − Day 4
Lecture 4 1 Probability Definition, Bayes’ theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests general.
Computing and Statistical Data Analysis / Stat 10
Presentation transcript:

1 Statistical Methods in HEP, in particular... Nuisance parameters and systematic uncertainties Glen Cowan Royal Holloway, University of London RHUL HEP Seminar 22 March, 2006 A rehash my talk at the IoP Half Day Meeting on Statistics in HEP University of Manchester, 16 November, 2005 Itself a rehash of PHYSTAT 2005, Oxford, September 2005 RHUL HEP seminar, 22 March, 2006

2 Vague outline Glen Cowan I.Nuisance parameters and systematic uncertainty II.Parameter measurement Frequentist Bayesian III.Estimating intervals (setting limits) Frequentist Bayesian IV.Comment on the D0 result on B s mixing V.Conclusions RHUL HEP seminar, 22 March, 2006

3 Statistical vs. systematic errors Glen Cowan Statistical errors: How much would the result fluctuate upon repetition of the measurement? Implies some set of assumptions to define probability of outcome of the measurement. Systematic errors: What is the uncertainty in my result due to uncertainty in my assumptions, e.g., model (theoretical) uncertainty; modelling of measurement apparatus. The sources of error do not vary upon repetition of the measurement. Often result from uncertain value of, e.g., calibration constants, efficiencies, etc. RHUL HEP seminar, 22 March, 2006

4 Systematic errors and nuisance parameters Glen Cowan Response of measurement apparatus is never modelled perfectly: RHUL HEP seminar, 22 March, 2006 x (true value) y (measured value) model: truth: Model can be made to approximate better the truth by including more free parameters. systematic uncertainty ↔ nuisance parameters

5 Nuisance parameters Glen Cowan Suppose the outcome of the experiment is some set of data values x (here shorthand for e.g. x 1,..., x n ). We want to determine a parameter  (could be a vector of parameters  1,...,  n ). The probability law for the data x depends on  : L(x|  ) (the likelihood function) E.g. maximize L to find estimator Now suppose, however, that the vector of parameters: contains some that are of interest, and others that are not of interest: Symbolically: The are called nuisance parameters. RHUL HEP seminar, 22 March, 2006

6 Example #1: fitting a straight line Glen Cowan Data: Model: measured y i independent, Gaussian: assume x i and  i known. Goal: estimate  0 (don’t care about  1 ). RHUL HEP seminar, 22 March, 2006

7 Case #1:  1 known a priori Glen Cowan For Gaussian y i, ML same as LS Minimize  2 → estimator Come up one unit from to find RHUL HEP seminar, 22 March, 2006

8 Glen Cowan Correlation between causes errors to increase. Standard deviations from tangent lines to contour Case #2: both  0 and  1 unknown RHUL HEP seminar, 22 March, 2006

9 Glen Cowan The information on  1 improves accuracy of Case #3: we have a measurement t 1 of  1 RHUL HEP seminar, 22 March, 2006

10 Glen Cowan The ‘tangent plane’ method is a special case of using the profile likelihood: The profile likelihood is found by maximizing L (  0,  1 ) for each  0. Equivalently use The interval obtained from is the same as what is obtained from the tangents to Well known in HEP as the ‘MINOS’ method in MINUIT. Profile likelihood is one of several ‘pseudo-likelihoods’ used in problems with nuisance parameters. See e.g. talk by Rolke at PHYSTAT05. RHUL HEP seminar, 22 March, 2006

11 Glen Cowan The Bayesian approach In Bayesian statistics we can associate a probability with a hypothesis, e.g., a parameter value . Interpret probability of  as ‘degree of belief’ (subjective). Need to start with ‘prior pdf’  (  ), this reflects degree of belief about  before doing the experiment. Our experiment has data x, → likelihood function L(x|  ). Bayes’ theorem tells how our beliefs should be updated in light of the data x: Posterior pdf p(  |x) contains all our knowledge about . RHUL HEP seminar, 22 March, 2006

12 Glen Cowan Case #4: Bayesian method We need to associate prior probabilities with  0 and  1, e.g., Putting this into Bayes’ theorem gives: posterior Q likelihood  prior ← based on previous measurement reflects ‘prior ignorance’, in any case much broader than RHUL HEP seminar, 22 March, 2006

13 Glen Cowan Bayesian method (continued) Ability to marginalize over nuisance parameters is an important feature of Bayesian statistics. We then integrate (marginalize) p(  0,  1 | x) to find p(  0 | x): In this example we can do the integral (rare). We find RHUL HEP seminar, 22 March, 2006

14 Glen Cowan Digression: marginalization with MCMC Bayesian computations involve integrals like often high dimensionality and impossible in closed form, also impossible with ‘normal’ acceptance-rejection Monte Carlo. Markov Chain Monte Carlo (MCMC) has revolutionized Bayesian computation. Google for ‘MCMC’, ‘Metropolis’, ‘Bayesian computation’,... MCMC generates correlated sequence of random numbers: cannot use for many applications, e.g., detector MC; effective stat. error greater than √n. Basic idea: sample multidimensional look, e.g., only at distribution of parameters of interest. RHUL HEP seminar, 22 March, 2006

15 Glen Cowan MCMC basics: Metropolis-Hastings algorithm Goal: given an n-dimensional pdf generate a sequence of points 1) Start at some point 2) Generate Proposal density e.g. Gaussian centred about 3) Form Hastings test ratio 4) Generate 5) If else move to proposed point old point repeated 6) Iterate RHUL HEP seminar, 22 March, 2006

16 Glen Cowan Metropolis-Hastings (continued) This rule produces a correlated sequence of points (note how each new point depends on the previous one). For our purposes this correlation is not fatal, but statistical errors larger than naive The proposal density can be (almost) anything, but choose so as to minimize autocorrelation. Often take proposal density symmetric: Test ratio is (Metropolis-Hastings): I.e. if the proposed step is to a point of higher, take it; if not, only take the step with probability If proposed step rejected, hop in place. RHUL HEP seminar, 22 March, 2006

17 Glen Cowan Metropolis-Hastings caveats Actually one can only prove that the sequence of points follows the desired pdf in the limit where it runs forever. There may be a “burn-in” period where the sequence does not initially follow Unfortunately there are few useful theorems to tell us when the sequence has converged. Look at trace plots, autocorrelation. Check result with different proposal density. If you think it’s converged, try it again with 10 times more points. RHUL HEP seminar, 22 March, 2006

18 Although numerical values of answer here same as in frequentist case, interpretation is different (sometimes unimportant?) Glen Cowan Example: posterior pdf from MCMC Sample the posterior pdf from previous example with MCMC: Summarize pdf of parameter of interest with, e.g., mean, median, standard deviation, etc. RHUL HEP seminar, 22 March, 2006

19 Glen Cowan Case #5: Bayesian method with vague prior Suppose we don’t have a previous measurement of  1 but rather some vague information, e.g., a theorist tells us:  1 ≥ 0 (essentially certain);  1 should have order of magnitude less than 0.1 ‘or so’. Under pressure, the theorist sketches the following prior: From this we will obtain posterior probabilities for  0 (next slide). We do not need to get the theorist to ‘commit’ to this prior; final result has ‘if-then’ character. RHUL HEP seminar, 22 March, 2006

20 Glen Cowan Sensitivity to prior Vary  (  ) to explore how extreme your prior beliefs would have to be to justify various conclusions (sensitivity analysis). Try exponential with different mean values... Try different functional forms... RHUL HEP seminar, 22 March, 2006

21 Glen Cowan Example #2: Poisson data with background Count n events, e.g., in fixed time or integrated luminosity. s = expected number of signal events b = expected number of background events n ~ Poisson(s+b): Sometimes b known, other times it is in some way uncertain. Goal: measure or place limits on s, taking into consideration the uncertainty in b. Widely discussed in HEP community, see e.g. proceedings of PHYSTAT meetings, Durham, Fermilab, CERN workshops... RHUL HEP seminar, 22 March, 2006

22 Glen Cowan Setting limits Frequentist intervals (limits) for a parameter s can be found by defining a test of the hypothesized value s (do this for all s): Specify values of the data n that are ‘disfavoured’ by s (critical region) such that P(n in critical region) ≤  for a prespecified , e.g., 0.05 or 0.1. (Because of discrete data, need inequality here.) If n is observed in the critical region, reject the value s. Now invert the test to define a confidence interval as: set of s values that would not be rejected in a test of size  (confidence level is 1  ). The interval will cover the true value of s with probability ≥ 1 . Equivalent to Neyman confidence belt construction. RHUL HEP seminar, 22 March, 2006

23 Glen Cowan Setting limits: ‘classical method’ E.g. for upper limit on s, take critical region to be low values of n, limit s up at confidence level 1   thus found from Similarly for lower limit at confidence level 1 , Sometimes choose  → central confidence interval. RHUL HEP seminar, 22 March, 2006

24 Glen Cowan Likelihood ratio limits (Feldman-Cousins) Define likelihood ratio for hypothesized parameter value s: Here is the ML estimator, note Critical region defined by low values of likelihood ratio. Resulting intervals can be one- or two-sided (depending on n). (Re)discovered for HEP by Feldman and Cousins, Phys. Rev. D 57 (1998) RHUL HEP seminar, 22 March, 2006

25 Glen Cowan Nuisance parameters and limits In general we don’t know the background b perfectly. Suppose we have a measurement of b, e.g., b meas ~ N (b,  b ) So the data are really: n events and the value b meas. In principle the confidence interval recipe can be generalized to two measurements and two parameters. Difficult and rarely attempted, but see e.g. talk by G. Punzi at PHYSTAT05. G. Punzi, PHYSTAT05 RHUL HEP seminar, 22 March, 2006

26 Glen Cowan Bayesian limits with uncertainty on b Uncertainty on b goes into the prior, e.g., Put this into Bayes’ theorem, Marginalize over b, then use p(s|n) to find intervals for s with any desired probability content. Controversial part here is prior for signal  s (s) (treatment of nuisance parameters is easy). RHUL HEP seminar, 22 March, 2006

27 Glen Cowan Cousins-Highland method Regard b as ‘random’, characterized by pdf  (b). Makes sense in Bayesian approach, but in frequentist model b is constant (although unknown). A measurement b meas is random but this is not the mean number of background events, rather, b is. Compute anyway This would be the probability for n if Nature were to generate a new value of b upon repetition of the experiment with  b (b). Now e.g. use this P(n;s) in the classical recipe for upper limit at CL = 1  : Result has hybrid Bayesian/frequentist character. RHUL HEP seminar, 22 March, 2006

28 Glen Cowan ‘Integrated likelihoods’ Consider again signal s and background b, suppose we have uncertainty in b characterized by a prior pdf  b (b). Define integrated likelihood as also called modified profile likelihood, in any case not a real likelihood. Now use this to construct likelihood ratio test and invert to obtain confidence intervals. Feldman-Cousins & Cousins-Highland (FHC 2 ), see e.g. J. Conrad et al., Phys. Rev. D67 (2003) and Conrad/Tegenfeldt PHYSTAT05 talk. Calculators available (Conrad, Tegenfeldt, Barlow). RHUL HEP seminar, 22 March, 2006

29 Glen Cowan Interval from inverting profile LR test Suppose we have a measurement b meas of b. Build the likelihood ratio test with profile likelihood: and use this to construct confidence intervals. See PHYSTAT05 talks by Cranmer, Feldman, Cousins, Reid. RHUL HEP seminar, 22 March, 2006

30 Comment on B s mixing from D0 Glen Cowan Last week D0 announced the discovery of B s mixing: Moriond talk by Brendan Casey, also hep-ex/ RHUL HEP seminar, 22 March, 2006 Produce a B q meson at time t=0; there is a time dependent probability for it to decay as an anti-B q (q = d or s): |V ts | À |V td | and so B s oscillates quickly compared to decay rate Sought but not seen at LEP; early on predicted to be visible at Tevatron Here are some of Casey’s slides with commentary...

31 Glen CowanStatistics in HEP, IoP Half Day Meeting, 16 November 2005, Manchester

32 Glen CowanStatistics in HEP, IoP Half Day Meeting, 16 November 2005, Manchester

33 Glen Cowan Confidence interval from likelihood function In the large sample limit it can be shown for ML estimators: defines a hyper-ellipsoidal confidence region, If then (n-dimensional Gaussian, covariance V) RHUL HEP seminar, 22 March, 2006

34 Glen Cowan Approximate confidence regions from L(  ) So the recipe to find the confidence region with CL = 1  is: For finite samples, these are approximate confidence regions. Coverage probability not guaranteed to be equal to  ; no simple theorem to say by how far off it will be (use MC). Remember here the interval is random, not the parameter. RHUL HEP seminar, 22 March, 2006

35 Glen CowanStatistics in HEP, IoP Half Day Meeting, 16 November 2005, Manchester

36 Glen CowanStatistics in HEP, IoP Half Day Meeting, 16 November 2005, Manchester

37 Glen Cowan Upper limit from test of hypothesized  m s Base test on likelihood ratio (here  =  m s ): Observed value is l obs, sampling distribution is g(l;  ) (from MC)  is excluded at CL=1  if D0 shows the distribution of ln l for  m s = 25 ps -1 equivalent to 2.1  effect 95% CL upper limit RHUL HEP seminar, 22 March, 2006

38 Glen CowanStatistics in HEP, IoP Half Day Meeting, 16 November 2005, Manchester

39 Glen CowanStatistics in HEP, IoP Half Day Meeting, 16 November 2005, Manchester

40 Wrapping up Glen Cowan I’ve shown a few ways of treating nuisance parameters in two examples (fitting line, Poisson mean with background). No guarantee this will bear any relation to the problem you need to solve... At recent PHYSTAT meetings the statisticians have encouraged physicists to: learn Bayesian methods, don’t get too fixated on coverage, try to see statistics as a ‘way of thinking’ rather than a collection of recipes. I tend to prefer the Bayesian methods for systematics but still a very open area of discussion. RHUL HEP seminar, 22 March, 2006