CLIC DBA Rolf Wegner 1 Structures for the CLIC Drive Beam Accelerator Rolf Wegner
CLIC DBA Rolf Wegner 2 motivation simulations of basic cells design of TWS optimisations, discussion summary and next steps Outline
CLIC DBA Rolf Wegner 3 motivation Erk Jensen R BP = 51 mm Ø BP = 102 mm
CLIC DBA Rolf Wegner 4 R 6 R 9 18 gap a LaLa simulations of basic cells R BP RaRa RbRb gap b LbLb
CLIC DBA Rolf Wegner 5 simulations of basic cells
CLIC DBA Rolf Wegner 6 simulations of basic cells
CLIC DBA Rolf Wegner 7 simulations of basic cells tuning R a => f 0 =1GHz variations: gap vgr/c R BP post processing: fitting
CLIC DBA Rolf Wegner 8 design of TWS gap n R BP P out η= P b /P in t fill mode spectrum E 0 T V acc Ncells P in IbIb IbIb
CLIC DBA Rolf Wegner 9 design of TWS example: P in = 10 MW I b = 4.21 A N cells = 10 R BP = 39 mm vgr/c (gap) const η= 97.7% tfilling= ns v gr /c lin. distribution η= 98.0% t filling = ns
CLIC DBA Rolf Wegner 10 design of TWS example: P in = 10 MW I b = 4.21 A N cells = 10 R BP = 39 mm vgr/c const η= 97.7% tfilling= ns v gr /c lin. distribution η= 98.0% t filling = ns
CLIC DBA Rolf Wegner 11 design of TWS example: P in = 10 MW I b = 4.21 A N cells = 10 R BP = 39 mm vgr/c const η= 97.7% tfilling= ns v gr /c lin. distribution η= 98.0% t filling = ns
CLIC DBA Rolf Wegner 12 design of TWS example: P in = 10 MW I b = 4.21 A N cells = 10 R BP = 39 mm vgr/c const η= 97.7% tfilling= ns v gr /c lin. distribution η= 98.0% t filling = ns
CLIC DBA Rolf Wegner 13 optimisations gap n (vgr/c) n gap 1 (vgr/c) 1
CLIC DBA Rolf Wegner 14 optimisations P in = 10 MW I b = 4.21 A R BP = 39 mm Ncells= 10 vgr/c lin. distribution vgr/c= [2.2% to 0.86%] vgr/c= [1.7% to 0.86%] vgr/c= [1.7% to 1.28%]
CLIC DBA Rolf Wegner 15 optimisations P in = 10 MW I b = 4.21 A R BP = 39 mm Ncells= vgr/c lin. distribution optimised for efficiency
CLIC DBA Rolf Wegner 16 optimisations - efficiency P in = 10 MW I b = 4.21 A R BP = mm Ncells= vgr/c lin. distribution optimised for efficiency RF to beam efficiency 97-98% no damping variety of structures Ncells ~ L structure ~ m R BP ~ mm
CLIC DBA Rolf Wegner 17 optimisations - efficiency P in = 15 MW I b = 4.21 A R BP = mm Ncells= vgr/c lin. distribution optimised for efficiency RF to beam efficiency 97-98% no damping variety of structures Ncells ~ L structure ~ m R BP ~ mm
CLIC DBA Rolf Wegner 18 optimisations – filling time P in = 10 MW I b = 4.21 A R BP = 39 mm Ncells= vgr/c const filling time efficiency
CLIC DBA Rolf Wegner 19 t 0 = 245 ns Δt= 27 ns α= 2% ? combined optimisations t fill [ns] damping factor D 245 ns D ≈ 1/ ns D ≈ 1/4 124 ns D ≈ 1/4 combination for optimisation C(η RF,t fill )= f 1 (η RF ) + f 2 (t fill ) 245 ± 27 ns D ≈ 1/10 structure tasks: acceleration => η RF phase noise damping => D, t fill f 1 (x)= 1- x f 2 (x)= α ((t fill -t 0 )/Δt) 2
CLIC DBA Rolf Wegner 20 combined optimisations
CLIC DBA Rolf Wegner 21 combined optimisations
CLIC DBA Rolf Wegner 22 combined optimisations
CLIC DBA Rolf Wegner 23 combined optimisations
CLIC DBA Rolf Wegner 24 combined optimisations
CLIC DBA Rolf Wegner 25 combined optimisations
CLIC DBA Rolf Wegner 26 summary variation of R BP => set of structures with η RF = % (undamped) t fill = 245 ± 10 ns P in = 10 MWP in = 15 MW N cells ≥ 9 opt: 11,12N cells ≥ 14 opt: L strucutre ≥ 0.9 m 1.2 mL strucutre ≥ 1.4 m 2 m total length ≥ 930 m 1.2 kmtotal length ≥ 960 mm 1.4 km R BP ≥ 33 mm mmR BP ≥ 37 mm mm
CLIC DBA Rolf Wegner 27 next steps
CLIC DBA Rolf Wegner 28 next steps mode bands wake fields damping
CLIC DBA Rolf Wegner 29 thank you for your attention Erk for all explanations and support
CLIC DBA Rolf Wegner 30
CLIC DBA Rolf Wegner 31 additional slides
CLIC DBA Rolf Wegner 32 additional slides
CLIC DBA Rolf Wegner 33 additional slides
CLIC DBA Rolf Wegner 34 additional slides
CLIC DBA Rolf Wegner 35 additional slides
CLIC DBA Rolf Wegner 36 additional slides
CLIC DBA Rolf Wegner 37 additional slides