12.08.2009CLIC DBA Rolf Wegner 1 Structures for the CLIC Drive Beam Accelerator Rolf Wegner.

Slides:



Advertisements
Similar presentations
Breakdown Rate Dependence on Gradient and Pulse Heating in Single Cell Cavities and TD18 Faya Wang, Chris Nantista and Chris Adolphsen May 1, 2010.
Advertisements

Choke-mode Damped X-band Structure for CLIC Main Linac Hao ZHA, Jiaru SHI CERN Sep 27, 2011 Jiaru Shi, LCWS11 Workshop, Granada1.
CLIC drive beam accelerating (DBA) structure Rolf Wegner.
INVESITGATION OF AN ALTERNATE MEANS OF WAKEFIELD SUPPRESSION IN CLIC MAIN LINACS CLIC_DDS.
CARE07, 29 Oct Alexej Grudiev, New CLIC parameters. The new CLIC parameters Alexej Grudiev.
July Alexej Grudiev, Improvement of CLIC structure. Possible improvement of the CLIC accelerating structure. From CLIC_G to CLIC_K Alexej.
INVESITGATION OF AN ALTERNATE MEANS OF WAKEFIELD SUPPRESSION IN CLIC MAIN LINACS CLIC_DDS.
A 2.3 GHz BANDWIDTH STRUCTURE FOR CLIC_DDS Vasim Khan
CLIC MAIN LINAC DDS Vasim Khan. 24 cells No interleaving 48cells 2-fold interleaving ∆fmin = 32.5 MHz ∆tmax =30.76 ns ∆s = 9.22 m 24 cells No interleaving.
ABSTRACT The main accelerating structures for the CLIC are designed to operate at 100 MV/m accelerating gradient. The accelerating frequency has been optimised.
CLIC MAIN LINAC DDS DESIGN AND FORTCOMING Vasim Khan & Roger Jones V. Khan LC-ABD 09, Cockcroft Institute /14.
Vasim Khan X-Band RF Structures, Beam Dynamics and Sources Workshop, Cockcroft Institute /21 CLIC_DDS_HPA study
Wakefield suppression in the CLIC main accelerating structures Vasim Khan & Roger Jones.
ABSTRACT The main accelerating structures for the CLIC are designed to operate at 100 MV/m accelerating gradient. The accelerating frequency has been optimised.
CLIC Drive Beam Linac Rolf Wegner. Outline Introduction: CLIC Drive Beam Concept Drive Beam Modules (modulator, klystron, accelerating structure) Optimisation.
Sub-Harmonic Buncher design for CLIC Drive Beam Injector Hamed Shaker School of Particles and Accelerators Institute for Research in Fundamental Sciences,
Room temperature RF Part 2.1: Strong beam-cavity coupling (beam loading) 30/10/2010 A.Grudiev 5 th IASLC, Villars-sur-Ollon, CH.
7.8GHz Dielectric Loaded High Power Generation And Extraction F. Gao, M. E. Conde, W. Gai, C. Jing, R. Konecny, W. Liu, J. G. Power, T. Wong and Z. Yusof.
R&D proposals for EuCard 2 EuCard2, April 21Steffen Döbert, BE-RF  SRF basic research (W. Weingarten)  CTF3 and CTF3+, possible infra - structure for.
Feedback from structure tuning: Effects and Compensation of length (phase) difference in dual-feed couplers 22 May 2015 Rolf Wegner.
Drive Beam Linac Stability Issues Avni AKSOY Ankara University.
Course B: rf technology Normal conducting rf Part 5: Higher-order-mode damping Walter Wuensch, CERN Sixth International Accelerator School for Linear Colliders.
2nd CLIC Advisory Committee (CLIC-ACE), CERN January 2008 Introduction to the CLIC Power Extraction and Transfer Structure (PETS) Design. I. Syratchev.
RF structure design KT high-gradient medical project kick-off Alberto Degiovanni TERA Foundation - EPFL.
Development of Transverse Modes Damped DLA Structure* C. Jing, P. Schoessow, A. Kanareykin, Euclid Techlabs, LLC R. Konecny, W. Gai, J. Power, W. Liu,
Drive Beam linac structures and RF power sources Erk Jensen, BE-RF with major contributions from: Jean-Bernard Jeanneret, Rolf Wegner 6th CLIC Advisory.
New RF design of CLIC DB AS Alexej Grudiev, BE-RF.
Higher-Order Modes and Beam-Loading Compensation in CLIC Main Linac Oleksiy Kononenko BE/RF, CERN CLIC RF Structure Development Meeting, March 14, 2012.
Preliminary results on simulation of fast-ion instability at 3 km LBNL damping ring 21 April 2005 Pohang Accelerator Laboratory Eun-San Kim.
CLIC Power Extraction and Transfer Structure.
Bunch Separation with RF Deflectors D. Rubin,R.Helms Cornell University.
WP 9.2 DDS Status, R.M. Jones, 25 th Oct 2010, WebEx Phone-in, Geneva 1 WP 9.2: DDS Status Roger M. Jones Cockcroft Institute and The University of Manchester.
Hybrid designs - directions and potential 1 Alessandro D’Elia, R. M. Jones and V. Khan.
TWO-BEAM, MULTI-MODE, DETUNED ACCSELERATING STRUCTURE S.Kazakov 1,2, S.Kuzikov 3, V.Yakovlev 4 J.L. Hirshfield 1,5, 1 Omega-p,Inc., 199 Whitney Ave., New.
Optimization of CLIC-G structure & Design of CLIC open structure Hao Zha, Alexej Grudiev (CERN) Valery Dolgashev (SLAC) 27/01/2015.
TESLA DAMPING RING RF DEFLECTORS DESIGN F.Marcellini & D. Alesini.
S. Bettoni, R. Corsini, A. Vivoli (CERN) CLIC drive beam injector design.
Oleksiy Kononenko CERN and JINR
1 Design and objectives of test accelerating structures Riccardo Zennaro.
I. Syratchev, HGW 2012, KEK, Japan The high power demonstration of the PETS ON/OFF operation with beam. I. Syratchev for CLIC team.
CLIC Workshop 2008 TBTS status. PETS testing program and installation status. Igor Syratchev & Germana Riddone for the CLIC team.
Accelerating structure prototypes for 2011 (proposal) A.Grudiev 6/07/11.
C/S band RF deflector for post interaction longitudinal phase space optimization (D. Alesini)
CLIC Beam instrumentation work shop, CERN, 2 nd & 3 rd of June 2009, Lars Søby BPM overview CLIC instrumentation work shop 2-3 June BPM overview.
Damping intense wake-fields in the main Linacs and PETS structures of the CLIC Linear Collider Vasim Khan: 1 st year PhD Student Supervisor: Dr. Roger.
Structure Wakefields and Tolerances R. Zennaro. Parameters of the CLIC structure “CLIC G” (from A. Grudiev) StructureCLIC_G Frequency: f [GHz]12 Average.
Status of the sub-harmonic bunching system for the CLIC DB injector front end Hamed Shaker School of Particles and Accelerators, Institute for Research.
Multi-stage pulse compressor
High efficiency work and MBK development for accelerators
A 6 GeV Compact X-ray FEL (CXFEL) Driven by an X-Band Linac
A 2.3 GHz BANDWIDTH STRUCTURE FOR CLIC_DDS
Wake field limitations in a low gradient main linac of CLIC
Status of the CLIC main beam injectors
Optimisation of single bunch linac for FERMI upgrade
RF Power Generation and PETS Design
CLIC_DDS study
X-band and high-gradient development plans at Tsinghua University
Brief Review of Microwave Dielectric Accelerators
Review of rf structure test results
Summary of the test structure design
High Efficiency X-band Klystron Design Study
Update of CLIC accelerating structure design
Recent high-gradient testing results from the CLIC XBoxes
CLIC Drive Beam Stabilisation
Overview Multi Bunch Beam Dynamics at XFEL
Status of the CLIC Injector studies
FIG. 7. Simulated edge localized mode magnetization and phase distributions at the 2.4 GHz resonance (top panels) and 3.6 GHz resonance (bottom panels)
CLIC Power Extraction and Transfer structure (PETS)
TCLIA/TCTV transverse BB impedance versus gap size
TCLIA/TCTV transverse BB impedance versus gap size
Presentation transcript:

CLIC DBA Rolf Wegner 1 Structures for the CLIC Drive Beam Accelerator Rolf Wegner

CLIC DBA Rolf Wegner 2 motivation simulations of basic cells design of TWS optimisations, discussion summary and next steps Outline

CLIC DBA Rolf Wegner 3 motivation Erk Jensen R BP = 51 mm Ø BP = 102 mm

CLIC DBA Rolf Wegner 4 R 6 R 9 18 gap a LaLa simulations of basic cells R BP RaRa RbRb gap b LbLb

CLIC DBA Rolf Wegner 5 simulations of basic cells

CLIC DBA Rolf Wegner 6 simulations of basic cells

CLIC DBA Rolf Wegner 7 simulations of basic cells tuning R a => f 0 =1GHz variations: gap vgr/c R BP post processing: fitting

CLIC DBA Rolf Wegner 8 design of TWS gap n R BP P out η= P b /P in t fill mode spectrum E 0 T V acc Ncells P in IbIb IbIb

CLIC DBA Rolf Wegner 9 design of TWS example: P in = 10 MW I b = 4.21 A N cells = 10 R BP = 39 mm vgr/c (gap) const η= 97.7% tfilling= ns v gr /c lin. distribution η= 98.0% t filling = ns

CLIC DBA Rolf Wegner 10 design of TWS example: P in = 10 MW I b = 4.21 A N cells = 10 R BP = 39 mm vgr/c const η= 97.7% tfilling= ns v gr /c lin. distribution η= 98.0% t filling = ns

CLIC DBA Rolf Wegner 11 design of TWS example: P in = 10 MW I b = 4.21 A N cells = 10 R BP = 39 mm vgr/c const η= 97.7% tfilling= ns v gr /c lin. distribution η= 98.0% t filling = ns

CLIC DBA Rolf Wegner 12 design of TWS example: P in = 10 MW I b = 4.21 A N cells = 10 R BP = 39 mm vgr/c const η= 97.7% tfilling= ns v gr /c lin. distribution η= 98.0% t filling = ns

CLIC DBA Rolf Wegner 13 optimisations gap n (vgr/c) n gap 1 (vgr/c) 1

CLIC DBA Rolf Wegner 14 optimisations P in = 10 MW I b = 4.21 A R BP = 39 mm Ncells= 10 vgr/c lin. distribution vgr/c= [2.2% to 0.86%] vgr/c= [1.7% to 0.86%] vgr/c= [1.7% to 1.28%]

CLIC DBA Rolf Wegner 15 optimisations P in = 10 MW I b = 4.21 A R BP = 39 mm Ncells= vgr/c lin. distribution optimised for efficiency

CLIC DBA Rolf Wegner 16 optimisations - efficiency P in = 10 MW I b = 4.21 A R BP = mm Ncells= vgr/c lin. distribution optimised for efficiency RF to beam efficiency 97-98% no damping variety of structures Ncells ~ L structure ~ m R BP ~ mm

CLIC DBA Rolf Wegner 17 optimisations - efficiency P in = 15 MW I b = 4.21 A R BP = mm Ncells= vgr/c lin. distribution optimised for efficiency RF to beam efficiency 97-98% no damping variety of structures Ncells ~ L structure ~ m R BP ~ mm

CLIC DBA Rolf Wegner 18 optimisations – filling time P in = 10 MW I b = 4.21 A R BP = 39 mm Ncells= vgr/c const filling time efficiency

CLIC DBA Rolf Wegner 19 t 0 = 245 ns Δt= 27 ns α= 2% ? combined optimisations t fill [ns] damping factor D 245 ns D ≈ 1/ ns D ≈ 1/4 124 ns D ≈ 1/4 combination for optimisation C(η RF,t fill )= f 1 (η RF ) + f 2 (t fill ) 245 ± 27 ns D ≈ 1/10 structure tasks: acceleration => η RF phase noise damping => D, t fill f 1 (x)= 1- x f 2 (x)= α ((t fill -t 0 )/Δt) 2

CLIC DBA Rolf Wegner 20 combined optimisations

CLIC DBA Rolf Wegner 21 combined optimisations

CLIC DBA Rolf Wegner 22 combined optimisations

CLIC DBA Rolf Wegner 23 combined optimisations

CLIC DBA Rolf Wegner 24 combined optimisations

CLIC DBA Rolf Wegner 25 combined optimisations

CLIC DBA Rolf Wegner 26 summary variation of R BP => set of structures with η RF = % (undamped) t fill = 245 ± 10 ns P in = 10 MWP in = 15 MW N cells ≥ 9 opt: 11,12N cells ≥ 14 opt: L strucutre ≥ 0.9 m 1.2 mL strucutre ≥ 1.4 m 2 m total length ≥ 930 m 1.2 kmtotal length ≥ 960 mm 1.4 km R BP ≥ 33 mm mmR BP ≥ 37 mm mm

CLIC DBA Rolf Wegner 27 next steps

CLIC DBA Rolf Wegner 28 next steps mode bands wake fields damping

CLIC DBA Rolf Wegner 29 thank you for your attention Erk for all explanations and support

CLIC DBA Rolf Wegner 30

CLIC DBA Rolf Wegner 31 additional slides

CLIC DBA Rolf Wegner 32 additional slides

CLIC DBA Rolf Wegner 33 additional slides

CLIC DBA Rolf Wegner 34 additional slides

CLIC DBA Rolf Wegner 35 additional slides

CLIC DBA Rolf Wegner 36 additional slides

CLIC DBA Rolf Wegner 37 additional slides