UMass Lowell Computer Science 91.503 Analysis of Algorithms Prof. Karen Daniels Fall, 2002 Lecture 8 Tuesday, 11/19/02 Linear Programming.

Slides:



Advertisements
Similar presentations
February 14, 2002 Putting Linear Programs into standard form
Advertisements

The simplex algorithm The simplex algorithm is the classical method for solving linear programs. Its running time is not polynomial in the worst case.
LINEAR PROGRAMMING Modeling a problem is boring --- and a distraction from studying the abstract form! However, modeling is very important: --- for your.
1 LP Duality Lecture 13: Feb Min-Max Theorems In bipartite graph, Maximum matching = Minimum Vertex Cover In every graph, Maximum Flow = Minimum.
Geometry and Theory of LP Standard (Inequality) Primal Problem: Dual Problem:
Linear Programming (LP) (Chap.29)
Linear Programming – Simplex Method
Introduction to Algorithms
1 Introduction to Linear Programming. 2 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. X1X2X3X4X1X2X3X4.
Copyright (c) 2003 Brooks/Cole, a division of Thomson Learning, Inc
Optimization of thermal processes2007/2008 Optimization of thermal processes Maciej Marek Czestochowa University of Technology Institute of Thermal Machinery.
Chapter 6 Linear Programming: The Simplex Method Section 3 The Dual Problem: Minimization with Problem Constraints of the Form ≥
The Simplex Method: Standard Maximization Problems
Operation Research Chapter 3 Simplex Method.
CS38 Introduction to Algorithms Lecture 15 May 20, CS38 Lecture 15.
Linear Programming.
1 Linear Programming Jose Rolim University of Geneva.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2006 Lecture 9 Wednesday, 11/15/06 Linear Programming.
Design and Analysis of Algorithms
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2003 Review Lecture Tuesday, 5/6/03.
Approximation Algorithms
Solving Linear Programs: The Simplex Method
Chapter 10: Iterative Improvement
Finite Mathematics & Its Applications, 10/e by Goldstein/Schneider/SiegelCopyright © 2010 Pearson Education, Inc. 1 of 99 Chapter 4 The Simplex Method.
ISM 206 Lecture 4 Duality and Sensitivity Analysis.
Chapter 4 The Simplex Method
MIT and James Orlin © Chapter 3. The simplex algorithm Putting Linear Programs into standard form Introduction to Simplex Algorithm.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2008 Lecture 9 Tuesday, 11/18/08 Linear Programming.
LINEAR PROGRAMMING SIMPLEX METHOD.
Chapter 3 Linear Programming Methods 高等作業研究 高等作業研究 ( 一 ) Chapter 3 Linear Programming Methods (II)
1 Linear Programming:Duality theory. Duality Theory The theory of duality is a very elegant and important concept within the field of operations research.
The Two-Phase Simplex Method LI Xiao-lei. Preview When a basic feasible solution is not readily available, the two-phase simplex method may be used as.
Simplex method (algebraic interpretation)
Duality Theory LI Xiaolei.
Chapter 3. Pitfalls Initialization Ambiguity in an iteration
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
Kerimcan OzcanMNGT 379 Operations Research1 Linear Programming: The Simplex Method Chapter 5.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Chapter 6 Linear Programming: The Simplex Method Section R Review.
Linear Programming Data Structures and Algorithms A.G. Malamos References: Algorithms, 2006, S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani Introduction.
Duality Theory  Every LP problem (called the ‘Primal’) has associated with another problem called the ‘Dual’.  The ‘Dual’ problem is an LP defined directly.
Linear Programming Revised Simplex Method, Duality of LP problems and Sensitivity analysis D Nagesh Kumar, IISc Optimization Methods: M3L5.
Chapter 4 Linear Programming: The Simplex Method
OR Chapter 8. General LP Problems Converting other forms to general LP problem : min c’x  - max (-c)’x   = by adding a nonnegative slack variable.
MIT and James Orlin © Chapter 3. The simplex algorithm Putting Linear Programs into standard form Introduction to Simplex Algorithm file Simplex2_AMII_05a_gr.
OR Chapter 7. The Revised Simplex Method  Recall Theorem 3.1, same basis  same dictionary Entire dictionary can be constructed as long as we.
1 Introduction to Linear Programming. 2 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. X1X2X3X4X1X2X3X4.
CSC 445/545 is done at 4:30 so I did NOT fill in the box for 4:30 for our class. Please put your name here. Please put your as well. 1.
TU/e Algorithms (2IL15) – Lecture 12 1 Linear Programming.
Copyright © 2006 Brooks/Cole, a division of Thomson Learning, Inc. Linear Programming: An Algebraic Approach 4 The Simplex Method with Standard Maximization.
1 Simplex algorithm. 2 The Aim of Linear Programming A Linear Programming model seeks to maximize or minimize a linear function, subject to a set of linear.
TU/e Algorithms (2IL15) – Lecture 12 1 Linear Programming.
The Simplex Method. and Maximize Subject to From a geometric viewpoint : CPF solutions (Corner-Point Feasible) : Corner-point infeasible solutions 0.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2010 Lecture 9 Tuesday, 4/20/10 Linear Programming 1.
Linear Programming Many problems take the form of maximizing or minimizing an objective, given limited resources and competing constraints. specify the.
Chap 10. Sensitivity Analysis
Linear Programming (LP) (Chap.29)
Perturbation method, lexicographic method
Linear Programming.
Chapter 4 Linear Programming: The Simplex Method
Chap 9. General LP problems: Duality and Infeasibility
The Simplex Method: Standard Minimization Problems
Chapter 5. Sensitivity Analysis
Outline Simplex algorithm The initial basic feasible solution
Solving Linear Programming Problems: Asst. Prof. Dr. Nergiz Kasımbeyli
Simplex method (algebraic interpretation)
Chapter 10: Iterative Improvement
Practical Issues Finding an initial feasible solution Cycling
Chapter 2. Simplex method
Presentation transcript:

UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2002 Lecture 8 Tuesday, 11/19/02 Linear Programming

Overview ä Motivation & Basics ä Standard & Slack Forms ä Formulating Problems as Linear Programs ä Simplex Algorithm ä Duality ä Initial Basic Feasible Solution ä Literature Case Study

Motivation & Basics

Motivation: A Political Problem source: textbook Cormen et al. Goal: Win election by winning majority of votes in each region. Subgoal: Win majority of votes in each region while minimizing advertising cost. 100,000 voters 200,000 voters 50,000 voters Thousands of voters who could be won with $1,000 of ads

Motivation: A Political Problem (continued) Thousands of voters representing majority. urban suburban rural source: textbook Cormen et al.

General Linear Programs real numbers variables Linear function Linear inequalities Linear constraints source: textbook Cormen et al.

Overview of Linear Programming Convex feasible region Objective function Objective value source: textbook Cormen et al.

Standard & Slack Forms

Standard Form objective function constraints source: textbook Cormen et al.

Standard Form (compact) mxn matrix m-dimensional vector n-dimensional vectors source: textbook Cormen et al. Can specify linear program in standard form by (A,b,c).

Converting to Standard Form source: textbook Cormen et al.

Converting to Standard Form (continued) source: textbook Cormen et al. Negate coefficients Transforming minimization to maximization

Converting to Standard Form (continued) source: textbook Cormen et al. If x j has no non-negativity constraint, replace each occurrence of x j with x j ’ – x j ”. Giving each variable a non-negativity constraint New non-negativity constraints

Converting to Standard Form (continued) source: textbook Cormen et al. Transforming equality constraints to inequality constraints

Converting to Standard Form (continued) source: textbook Cormen et al. Changing sense of an inequality constraint Rationale:

Converting Linear Programs into Slack Form source: textbook Cormen et al. for algorithmic ease, transform all constraints except non-negativity ones into equalities for inequality constraint: define slack slack variable instead of s basic variables non-basic variables

Converting Linear Programs into Slack Form (continued) source: textbook Cormen et al. objective function

Converting Linear Programs into Slack Form (continued) source: textbook Cormen et al. Compact Form: (N, B, A, b, c, v) set of indices of non-basic variables set of indices of basic variables Slack Form Example Compact Form negative of slack form coefficients

Formulating Problems as Linear Programs

Shortest Paths source: textbook Cormen et al. Single-pair shortest path: minimize “distance” from source s to sink t. Can we replace maximize with minimize here? Why or why not?

Maximum Flow source: textbook Cormen et al.

Minimum Flow source: textbook Cormen et al.

Multicommodity Flow source: textbook Cormen et al. should be s i

Simplex Method

Solving a Linear Program source: textbook Cormen et al. ä Simplex algorithm ä Geometric interpretation ä Visit vertices on the boundary of the simplex representing the convex feasible region ä Transforms set of inequalities using process similar to Gaussian elimination ä Run-time ä not polynomial in worst-case ä often very fast in practice ä Ellipsoid method ä Run-time ä polynomial ä slow in practice ä Interior-Point methods ä Run-time ä polynomial ä for large inputs, performance can be competitive with simplex method ä Moves through interior of feasible region

Simplex Algorithm: Example Basic Solution source: textbook Cormen et al. Standard Form Slack Form Basic Solution: set each nonbasic variable to 0. Basic Solution:

Simplex Algorithm: Example Reformulating the LP Model source: textbook Cormen et al. Main Idea: In each iteration, reformulate the LP model so basic solution has larger objective value Select a nonbasic variable whose objective coefficient is positive: x 1 Increase its value as much as possible. Identify tightest constraint on increase. For basic variable x 6 of that constraint, swap role with x 1. Rewrite other equations with x 6 on RHS. PIVOT leaving variable entering variable new objective value

Simplex Algorithm: Example Reformulating the LP Model source: textbook Cormen et al. Next Iteration: select x 3 as entering variable. PIVOT leaving variable entering variable New Basic Solution: new objective value

Simplex Algorithm: Example Reformulating the LP Model source: textbook Cormen et al. Next Iteration: select x 2 as entering variable. PIVOT leaving variable entering variable New Basic Solution: new objective value

Simplex Algorithm: Issues to be Addressed… source: textbook Cormen et al.

Simplex Algorithm: Pivoting source: textbook Cormen et al. leaving variable entering variable Rewrite the equation that has x l on LHS to have x e on LHS Update remaining equations by substituting RHS of new equation for each occurrence of x e. Do the same for objective function. Update sets of nonbasic, basic variables.

Simplex Algorithm: Pivoting (continued) source: textbook Cormen et al.

Simplex Algorithm: Pseudocode source: textbook Cormen et al. to be defined later (detects infeasibility) Feasibility initial basic solution optimal solution

Simplex Algorithm: Correctness Proof Strategy source: textbook Cormen et al. ä If SIMPLEX has initial feasible solution and eventually terminates, then it either ä returns a feasible solution or ä determines that the LP is unbounded. ä SIMPLEX terminates. ä SIMPLEX’s solution is optimal.

Simplex Algorithm: Correctness Proof Approach, Part I source: textbook Cormen et al. ä If SIMPLEX has initial feasible solution and eventually terminates, then it either ä returns a feasible solution or ä determines that the LP is unbounded.

Simplex Algorithm: Correctness Proof Approach, Part II source: textbook Cormen et al.

Duality Simplex Algorithm: Correctness Proof Approach, Part III

Linear Programming Duality source: textbook Cormen et al. max becomes min RHS coefficients swap places with objective function coefficients sense changes x variables go away y variables appear

Duality Example source: textbook Cormen et al.

Weak Linear Programming Duality source: textbook Cormen et al. Any feasible solution to primal LP has value no greater than that of any feasible solution to the dual LP.

Weak Linear Programming Duality (continued) source: textbook Cormen et al.

Finding a Dual Solution source: textbook Cormen et al. Finding a dual solution whose value is equal to that of an optimal primal solution…

Optimality source: textbook Cormen et al.

Initial Basic Feasible Solution

Finding an Initial Solution source: textbook Cormen et al. An LP model whose initial basic solution is not feasible

Finding an Initial Solution (continued) source: textbook Cormen et al. Auxiliary LP model L aux :

Finding an Initial Solution (continued) source: textbook Cormen et al.

Finding an Initial Solution (continued) source: textbook Cormen et al. Original LP model L aux L aux in slack form

Finding an Initial Solution (continued) source: textbook Cormen et al. PIVOT

Finding an Initial Solution (continued) source: textbook Cormen et al.

Fundamental Theorem of Linear Programming source: textbook Cormen et al.

Literature Case Study