Dragan Jovicic Harvinder Singh

Slides:



Advertisements
Similar presentations
The simplex algorithm The simplex algorithm is the classical method for solving linear programs. Its running time is not polynomial in the worst case.
Advertisements

Solving LP Models Improving Search Special Form of Improving Search
Linear Programming Problem
Lecture 3 Linear Programming: Tutorial Simplex Method
Lecture #3; Based on slides by Yinyu Ye
Linear Programming (LP) (Chap.29)
Linear Programming – Simplex Method
Introduction to Algorithms
The Simplex Method The geometric method of solving linear programming problems presented before. The graphical method is useful only for problems involving.
Chapter 6 Linear Programming: The Simplex Method
Sections 4.1 and 4.2 The Simplex Method: Solving Maximization and Minimization Problems.
Optimization of thermal processes2007/2008 Optimization of thermal processes Maciej Marek Czestochowa University of Technology Institute of Thermal Machinery.
Linear Programming Fundamentals Convexity Definition: Line segment joining any 2 pts lies inside shape convex NOT convex.
Basic Feasible Solutions: Recap MS&E 211. WILL FOLLOW A CELEBRATED INTELLECTUAL TEACHING TRADITION.
Introduction to Linear and Integer Programming
Linear programming Thomas S. Ferguson University of California at Los Angeles Compressive Sensing Tutorial PART 3 Svetlana Avramov-Zamurovic January 29,
The Simplex Method: Standard Maximization Problems
Operation Research Chapter 3 Simplex Method.
Solving Linear Programs: The Simplex Method
Chapter 10: Iterative Improvement
Finite Mathematics & Its Applications, 10/e by Goldstein/Schneider/SiegelCopyright © 2010 Pearson Education, Inc. 1 of 99 Chapter 4 The Simplex Method.
Linear Programming (LP)
The Simplex Method.
Chapter 4 The Simplex Method
Chapter 3 An Introduction to Linear Programming
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
LINEAR PROGRAMMING SIMPLEX METHOD.
Chapter 3 Linear Programming Methods 高等作業研究 高等作業研究 ( 一 ) Chapter 3 Linear Programming Methods (II)
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS ST. EDWARD’S UNIVERSITY.
Simplex method (algebraic interpretation)
1 DSCI 3023 Linear Programming Developed by Dantzig in the late 1940’s A mathematical method of allocating scarce resources to achieve a single objective.
1 1 Slide Linear Programming (LP) Problem n A mathematical programming problem is one that seeks to maximize an objective function subject to constraints.
ECE 556 Linear Programming Ting-Yuan Wang Electrical and Computer Engineering University of Wisconsin-Madison March
Chapter 6 Linear Programming: The Simplex Method Section R Review.
Chapter 7 Introduction to Linear Programming
1 1 Slide © 2005 Thomson/South-Western Chapter 2 Introduction to Linear Programming n Linear Programming Problem n Problem Formulation n A Maximization.
Duality Theory  Every LP problem (called the ‘Primal’) has associated with another problem called the ‘Dual’.  The ‘Dual’ problem is an LP defined directly.
1 1 Slide © 2001 South-Western College Publishing/Thomson Learning Anderson Sweeney Williams Anderson Sweeney Williams Slides Prepared by JOHN LOUCKS QUANTITATIVE.
Chapter 2 Introduction to Linear Programming n Linear Programming Problem n Problem Formulation n A Maximization Problem n Graphical Solution Procedure.
4  The Simplex Method: Standard Maximization Problems  The Simplex Method: Standard Minimization Problems  The Simplex Method: Nonstandard Problems.
Advanced Operations Research Models Instructor: Dr. A. Seifi Teaching Assistant: Golbarg Kazemi 1.
Chapter 4 Linear Programming: The Simplex Method
OR Chapter 8. General LP Problems Converting other forms to general LP problem : min c’x  - max (-c)’x   = by adding a nonnegative slack variable.
CPSC 536N Sparse Approximations Winter 2013 Lecture 1 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAA.
MIT and James Orlin © Chapter 3. The simplex algorithm Putting Linear Programs into standard form Introduction to Simplex Algorithm file Simplex2_AMII_05a_gr.
An-Najah N. University Faculty of Engineering and Information Technology Department of Management Information systems Operations Research and Applications.
Simplex Method Simplex: a linear-programming algorithm that can solve problems having more than two decision variables. The simplex technique involves.
Kerimcan OzcanMNGT 379 Operations Research1 Linear Programming Chapter 2.
TU/e Algorithms (2IL15) – Lecture 12 1 Linear Programming.
Copyright © 2006 Brooks/Cole, a division of Thomson Learning, Inc. Linear Programming: An Algebraic Approach 4 The Simplex Method with Standard Maximization.
1 Simplex algorithm. 2 The Aim of Linear Programming A Linear Programming model seeks to maximize or minimize a linear function, subject to a set of linear.
TU/e Algorithms (2IL15) – Lecture 12 1 Linear Programming.
Chapter 4 The Simplex Algorithm and Goal Programming
The Simplex Method. and Maximize Subject to From a geometric viewpoint : CPF solutions (Corner-Point Feasible) : Corner-point infeasible solutions 0.
An Introduction to Linear Programming
Linear Programming for Solving the DSS Problems
Decision Support Systems
EMGT 6412/MATH 6665 Mathematical Programming Spring 2016
An Introduction to Linear Programming Pertemuan 4
Chapter 2 An Introduction to Linear Programming
Chap 10. Sensitivity Analysis
The Simplex Method The geometric method of solving linear programming problems presented before. The graphical method is useful only for problems involving.
Linear programming Simplex method.
Chap 9. General LP problems: Duality and Infeasibility
Chapter 3 The Simplex Method and Sensitivity Analysis
The Simplex Method The geometric method of solving linear programming problems presented before. The graphical method is useful only for problems involving.
Linear programming Simplex method.
Linear Programming Problem
Graphical solution A Graphical Solution Procedure (LPs with 2 decision variables can be solved/viewed this way.) 1. Plot each constraint as an equation.
Presentation transcript:

Dragan Jovicic Harvinder Singh Linear Programming Dragan Jovicic Harvinder Singh

Introduction to LP Linear programming (LP) problems are optimization problems where the objective function and the constraints of the problem are all linear. Many practical problems in operations research can be expressed as linear programming problems. A lot of work is generated on the research of specialized algorithms for the solutions of specific LP problems. In mathematical optimization theory, the simplex algorithm of George Dantzig is the fundamental technique for numerical solution of the LP problem.

Outline Introduction Standard Form Matrix Form Example of LP formulation Example 1 Augmented form (slack form) Example 2 Theory Simplex algorithm

Guidelines for Model Formulation Understand the problem thoroughly. Describe the objective. Describe each constraint. Define the decision variables. Write the objective in terms of the decision variables. Write the constraints in terms of the decision variables.

Standard form a21x1 + a22x2 + … + a2nxn < b2 … Standard form is a basic way of describing a LP problem. It consists of 3 parts: A linear function to be maximized maximize c1x1 + c2x2 + … + cnxn Problem constraints subject to a11x1 + a12x2 + … + a1nxn < b1 a21x1 + a22x2 + … + a2nxn < b2 … am1x1 + am2x2 + … + amnxn < bm Non-negative variables e.g. x1, x2 > 0

The problems is usually expressed in matrix form and then it becomes: maximize cTx subject to Ax < b, x > 0 Other forms, such as minimization problems, problems with constraints on alternative forms, as well as problems involving negative variables can always be rewritten into an equivalent problem in standard form.

Example of LP formulation : A Maximization Problem Maximize 5x1 + 7x2 s.t. x1 < 6 2x1 + 3x2 < 19 x1 + x2 < 8 x1, x2 > 0 Standard Form Max 5x1 + 7x2 + 0s1 + 0s2 + 0s3 s.t. x1 + s1 = 6 2x1 + 3x2+ s2 = 19 x1 + x2 + s3 = 8 x1, x2 , s1 , s2 , s3 > 0

Example 1 Suppose that a farmer has a piece of farm land, say A square kilometers large, to be planted with either wheat or barley or some combination of the two. The farmer has a limited permissible amount F of fertilizer and P of insecticide which can be used, each of which is required in different amounts per unit area for wheat (F1, P1) and barley (F2, P2). Let S1 be the selling price of wheat, and S2 the price of barley. If we denote the area planted with wheat and barley with x1 and x2 respectively, then the optimal number of square kilometers to plant with wheat vs. barley can be expressed as a linear programming problem: ->

Example 1 cont. maximize S1x1 + S2x2 ( maximize the revenue – this is the “objective function”) subject to x1 +x2 < A (limit on total area) F1x1 + F2x2 < F (limit on fertilizer) P1x2 + P2x2 < P (limit on insecticide) x1 >= 0, x2 > 0 (cannot plant a negative area) which in matrix form becomes maximize subject to

Augmented form (slack form) Linear programming problems must be converted into augmented form before being solved by the simplex algorithm. This form introduces non-negative slack variables to replace non-equalities with equalities in the constraints. The problem can then be written on the following form: Maximize Z in:

Example 1 (slack form) The example 1 above becomes as follows when converted Into augmented form: maximize S1x1 + S2x2 (objective function) subject to x1 +x2 + x3 = A (augmented constraint) F1x1 + F2x2 < F + x4 = F (augmented constraint) P1x2 + P2x2 + x5 = P (augmented constraint) where x3,x4,x5 are (non-negative) slack variables. Which in matrix form becomes: Maximize Z in:

THEORY * Geometrically, the linear constraints define a convex polyhedron, which is called the feasible region. The linear objective function implies that an optimal solution can only occur at a boundary point of the feasible region. * There are two situations in which no optimal solution can be found: 1. if the constraints contradict each other (for instance, x ≥ 2 and x ≤ 1) then the feasible region is empty and there can be no optimal solution, since there are no solutions at all. In this case, the LP is said to be infeasible. 2. Alternatively, the polyhedron can be unbounded in the direction of the objective function (for example: maximize x1 + 3 x2 subject to x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 10), in which case there is no optimal solution since solutions with arbitrarily high values of the objective function can be constructed.

THEORY cont. * The optimum is always attained at a vertex of the polyhedron. However, the optimum is not necessarily unique: it is possible to have a set of optimal solutions covering an edge or face of the polyhedron, or even the entire polyhedron (This last situation would occur if the objective function were constant). A series of linear constraints on two variables produces a feasible region of possible values for those variables. Solvable problems will have a feasible region in the shape of a simple polygon.

Simplex algorithm In mathematical optimization theory, the simplex algorithm of George Dantzig is the fundamental technique for numerical solution of the linear programming problem. The simplex algorithm solves LP problems by constructing an admissible solution at a vertex of the polyhedron, and then walking along edges of the polyhedron to vertices with successively higher values of the objective function until the optimum is reached. The elementary simplex method is the name of Dantzig's original (1947) algorithm, with the following rules applied to the standard form: Min {cx: Ax=b, x >= 0}. Let dj = reduced cost of xj; terminate if dj > 0 for all j. Select dj < 0 as one of greatest magnitude. In the associated column (j) of the tableau, compute the min ratio: xi / a(i, j): a(i, j) > 0. (If a(., j) <= 0, LP is unbounded). Enter xj into the basic set, in exchange for xi, and update the tableau. Version of simplex algorithm and the source code can be found at http://www-fp.mcs.anl.gov/otc/Guide/CaseStudies/simplex/applet/SimplexTool.html