SENSITIVITY ANALYSIS.

Slides:



Advertisements
Similar presentations
QingPeng (QP) Zhang  Sensitivity analysis is concerned with how changes in an linear programming’s parameters affect the optimal.
Advertisements

LINEAR PROGRAMMING SENSITIVITY ANALYSIS
Understanding optimum solution
Chapter 5 Sensitivity Analysis: An Applied Approach
Copyright (c) 2003 Brooks/Cole, a division of Thomson Learning, Inc. 1 Chapter 5 Sensitivity Analysis: An Applied Approach to accompany Introduction to.
Introduction to Sensitivity Analysis Graphical Sensitivity Analysis
Sensitivity Analysis Sensitivity analysis examines how the optimal solution will be impacted by changes in the model coefficients due to uncertainty, error.
Linear Programming Sensitivity of the Right Hand Side Coefficients.
1/53 Slide Linear Programming: Sensitivity Analysis and Interpretation of Solution n Introduction to Sensitivity Analysis n Graphical Sensitivity Analysis.
IENG313 Operation Research I
LP EXAMPLES.
Lecture 12: Sensitivity Examples (Shadow Price Interpreted) AGEC 352 Spring 2012 – February 29 R. Keeney.
19 Linear Programming CHAPTER
Chapter 3 Linear Programming: Sensitivity Analysis and Interpretation of Solution MT 235.
Lecture 11: Sensitivity Part II: Prices AGEC 352 Spring 2011 – March 2 R. Keeney.
1 Chapter 6 Sensitivity Analysis and Duality PART 3 Mahmut Ali GÖKÇE.
Chapter 4: Linear Programming Sensitivity Analysis
Linear Programming. Linear programming A technique that allows decision makers to solve maximization and minimization problems where there are certain.
Linear Programming: Fundamentals
1 Linear Programming Using the software that comes with the book.
LINEAR PROGRAMMING SENSITIVITY ANALYSIS
To Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Seventh Edition © 2004 Prentice Hall, Inc. All rights reserved. Linear Programming.
3-1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Linear Programming: Computer Solution and Sensitivity Analysis Chapter 3.
1 1 Slide LINEAR PROGRAMMING Introduction to Sensitivity Analysis Professor Ahmadi.
LINEAR PROGRAMMING: THE GRAPHICAL METHOD
Spreadsheet Modeling & Decision Analysis:
John Loucks Modifications by A. Asef-Vaziri Slides by St. Edward’s
Solver Linear Problem Solving MAN Micro-computers & Their Applications.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Kerimcan OzcanMNGT 379 Operations Research1 LP: Sensitivity Analysis and Interpretation of Solution Chapter 3.
Computational Methods for Management and Economics Carla Gomes
Introduction to Mathematical Programming OR/MA 504 Chapter 3.
1 The Role of Sensitivity Analysis of the Optimal Solution Is the optimal solution sensitive to changes in input parameters? Possible reasons for asking.
Chapter 19 Linear Programming McGraw-Hill/Irwin
Linear Programming Chapter 13 Supplement.
Special Conditions in LP Models (sambungan BAB 1)
Readings Readings Chapter 3
Sensitivity Analysis What if there is uncertainly about one or more values in the LP model? 1. Raw material changes, 2. Product demand changes, 3. Stock.
Presentation: H. Sarper
Managerial Decision Making and Problem Solving
McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Table of Contents Chapter 5 (What-If Analysis for Linear Programming) Continuing the Wyndor.
CHAPTER 8: POST OPTIMALITY ANALYSIS. What is Post Optimality Analysis?  Post Optimality Analysis –Sensitivity Analysis –What-If Analysis  what happens.
1 Chapter 10 The primal linear program solution answers the tactical question when it tells us how much to produce. But the dual can have far greater impact.
THE GALAXY INDUSTRY PRODUCTION PROBLEM -
1 LINEAR PROGRAMMING Introduction to Sensitivity Analysis Professor Ahmadi.
Linear Programming McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
5-1 Wyndor (Before What-If Analysis). 5-2 Using the Spreadsheet to do Sensitivity Analysis The profit per door has been revised from $300 to $200. No.
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
Linear Programming: Sensitivity Analysis and Interpretation of Solution Pertemuan 5 Matakuliah: K0442-Metode Kuantitatif Tahun: 2009.
1 The Dual in Linear Programming In LP the solution for the profit- maximizing combination of outputs automatically determines the input amounts that must.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or.
Professional software packages such as The WinQSB and LINDO provide the following LP information: Information about the objective function: –its optimal.
Chapter 6 Simplex-Based Sensitivity Analysis and Duality
 Minimization Problem  First Approach  Introduce the basis variable  To solve minimization problem we simple reverse the rule that is we select the.
1 1 Slide © 2005 Thomson/South-Western Simplex-Based Sensitivity Analysis and Duality n Sensitivity Analysis with the Simplex Tableau n Duality.
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
Spreadsheet Modeling & Decision Analysis A Practical Introduction to Management Science 5 th edition Cliff T. Ragsdale.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Supplement 6 Linear Programming.
Operations Research By: Saeed Yaghoubi 1 Graphical Analysis 2.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 2 Linear Programming Chapter 3 3 Chapter Objectives –Requirements for a linear programming model. –Graphical representation of linear models. –Linear.
Chapter 3: Sensitivity Analysis and the Dual Problem & Shadow Prices
Chapter 5 Sensitivity Analysis: An Applied Approach
Chapter 5 Simplex-Based Sensitivity Analysis and Duality
Duality Theory and Sensitivity Analysis
Sensitivity.
Linear Programming – Sensitivity Analysis
Applied Statistical and Optimization Models
Presentation transcript:

SENSITIVITY ANALYSIS

SENSITIVITY ANALYSIS What happens to the optimal solution if: Coefficients of Objective function change, Values to the right of Constraints change,

Binding and Non-Binding Constraints Binding constraints have zero slack or zero surplus and vice versa. If the availability of an additional unit of resource alters the optimal production plan, thereby increasing the profit, then that constraint is said to be a 'Binding Constraint'. If the availability of an additional unit of a resource has no effect on the production plan, then that constraint is said to be non-binding. Non-binding constraints have a Shadow (or Dual Price) = 0

SENSITIVITY ANALYSIS SHADOW PRICE (DUAL VALUE) It is the marginal value of increasing the right-hand side of any constraint. In another words, it is the additional profit generated by an additional unit of that resource. Shadow price for not binding constraints is zero. Lower and upper bounds given for each constraint (resource) provide the range over which the shadow price for that constraint is valid.

Resource Ranging How much is it possible to increase or decrease the units of a resource whilst the shadow price is effective?

REDUCED COST A decision variable with a positive value in the optimum solution will generally have zero reduced cost. Likewise, a decision variable with value zero in the optimum solution will have a non-zero reduced cost, which shows the amount the variable's objective function coefficient would have to improve (increase for maximization problems, decrease for minimization problems) before this variable could assume a positive value in the objective function.

SENSITIVITY ANALYSIS Dual Value RHS max Z (Profit) min Z (Cost) Positive increase increase decrease Positive decrease decrease increase Negative increase decrease increase Negative decrease increase decrease Note: As long as increases/decreases in RHSs are within the given lower and upper bounds

EXAMPLE 2 Tucker Inc. needs to produce 1000 Tucker automobiles. The company has four production plants. Due to differing workforces, technological advances, and so on, the plants differ in the cost of producing each car. They also use a different amount of labor and raw material at each. This is summarized in the following table: Plant Cost ('000) Labor Material 1 15 2 3 2 10 3 4 3 9 4 5 4 7 5 6 The labor contract signed requires at least 400 cars to be produced at plant 3; there are 3300 hours of labor and 4000 units of material that can be allocated to the four plants.

Questions for Example 1 1. What is the optimum solution? What is the current cost of production? 2. How much will it cost to produce one more vehicle? How much will we save by producing one less? 3. How would our solution change if it costs only $8,000 to produce at plant 2? 4. For what ranges of costs is our optimal solution (except for the objective value) valid for plant 2? 5. How much are we willing to pay for one more labor hour?

Questions for Example 2 6. What would be the effect of reducing the 400 car limit down to 200 cars? To 0 cars? What would be the effect of increasing it by 100 cars? by 200 cars? 7. How much is our raw material worth (to get one more unit)? How many units are we willing to buy at that price? What will happen if we want more?