1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.

Slides:



Advertisements
Similar presentations
Chapter 10 Project Scheduling: PERT/CPM
Advertisements

Chapter 7 Project Management
Project Scheduling: PERT/CPM n Managers are often responsible for planning, scheduling and controlling projects that consist of numerous separate jobs.
Project Management Projects are unique, one-time operations designed to accomplish a specific set of objectives in a limited timeframe Project managers.
Project Management CPM/PERT Professor Ahmadi.
Project Scheduling: PERT/CPM
1 1 Slide © 2006 Thomson South-Western. All Rights Reserved. Slides prepared by JOHN LOUCKS St. Edwards University.
Chapter 13 Project Scheduling: PERT/CPM
Chapter 9 Project Scheduling: PERT/CPM
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edwards University.
F O U R T H E D I T I O N Project Management © The McGraw-Hill Companies, Inc., 2003 supplement 3 DAVIS AQUILANO CHASE PowerPoint Presentation by Charlie.
1 1 Slide © 2001 South-Western College Publishing/Thomson Learning Anderson Sweeney Williams Anderson Sweeney Williams Slides Prepared by JOHN LOUCKS QUANTITATIVE.
Terminology Project: Combination of activities that have to be carried out in a certain order Activity: Anything that uses up time and resources CPM: „Critical.
1 Topics to cover in 2 nd part ( to p2). 2 Chapter 8 - Project Management Chapter Topics ( to p3)
1 Project Scheduling CP - Chapter 10 Lecture 3. 2 Project Management  How is it different?  Limited time frame  Narrow focus, specific objectives 
1 1 Slide © 2005 Thomson/South-Western Q 5 – 13 x 1 = the probability that Station A will take Sitcom Rerun x 2 = the probability that Station A will take.
1 1 Slide © 2004 Thomson/South-Western Chapter 12 Project Scheduling: PERT/CPM n Project Scheduling with Known Activity Times n Project Scheduling with.
Project Scheduling Prof. Jiang Zhibin Dept. of IE, SJTU.
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
Tutorial 2 Project Management Activity Charts (PERT Charts)
MGMT 483 Week 8 Scheduling.
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
Example: Frank’s Fine Floats
1 1 Slide © 2005 Thomson/South-Western Chapter 10 Project Scheduling: PERT/CPM n Project Scheduling with Known Activity Times n Project Scheduling with.
PERT/CPM Models for Project Management
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Chapter 10 Project Scheduling: PERT/CPM
1 Slide © 2005 Thomson/South-Western Chapter 10 Project Scheduling: PERT/CPM Project Scheduling with Known Activity Times Project Scheduling with Known.
Scheduling: CrossChek Golf Club Manufacturing CrossChek sporting goods is considering a process for development of a new golf club Processing times, as.
Operations and Supply Chain Management, 8th Edition
1 Lecture 4 MGMT 650 Network Models – Shortest Path Project Scheduling Forecasting.
Project Scheduling Professor Stephen Lawrence Leeds School of Business University of Colorado Boulder, CO
EMGT 501 HW #2 Answer. 020/3 X 3 05/601-1/62/3050/3 X 6 0-5/300-2/3-1/3180/3 (c).3/230with )3/80,0,0,3/50,3/20,0(*)*, ( solution Optimal   Z.
EMGT 501 HW #2 Solutions Chapter 6 - SELF TEST 21 Chapter 6 - SELF TEST 22.
1 Material Management Class Note # 5-A ( in review ) Project Scheduling & Management Prof. Yuan-Shyi Peter Chiu Feb
Operations Management Contemporary Concepts and Cases Chapter Fourteen Project Planning and Scheduling Copyright © 2011 by The McGraw-Hill Companies,
Operations Management Project Management
MANA 705 DL © Sistema Universitario Ana G. Méndez, All rights reserved. W6 6.2 Operation Management Operation Management Managing Projects Techniques.
8-1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Project Management Chapter 8.
Network Problem CPM & PERT
Copyright 2006 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Project Management Operations Management - 5 th Edition Chapter.
Chapter 8 Scheduling © 2012 John Wiley & Sons Inc.
To Accompany Russell and Taylor, Operations Management, 4th Edition,  2003 Prentice-Hall, Inc. All rights reserved. Chapter 17 Project Management Part.
1 Project Planning, Scheduling and Control Project – a set of partially ordered, interrelated activities that must be completed to achieve a goal.
1 1 Project Scheduling PERT/CPM Networks. 2 2 Originated by H.L.Gantt in 1918 GANTT CHART Advantages - Gantt charts are quite commonly used. They provide.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2005 Thomson/South-Western Chapter 10 Project Scheduling: PERT/CPM n Project Scheduling with Known Activity Times n Project Scheduling with.
Chapter 8 Scheduling © 2012 John Wiley & Sons Inc.
8-1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Project Management Chapter 8.
6/10/01Network Problems: DJK1 Network Problems Chapters 9 and 10.
Dr. C. Lightner Fayetteville State University 1 Chapter 10 Project Scheduling: PERT/CPM Project Scheduling with Known Activity Times Project Scheduling.
CPM – Critical Path Method Can normal task times be reduced? Is there an increase in direct costs? Additional manpower Additional machines Overtime, etc…
Project Management Chapter 13 Sections 13.1, 13.2, and 13.3.
Prof.Dr. Ahmet R. Özdural – Class Notes_06 - KMU417 Project Planning and Organization – Fall Semester.
8-1 Example: Frank’s Fine Floats Frank’s Fine Floats is in the business of building elaborate parade floats. Frank and his crew have a new float to build.
Project Planning & Scheduling What is a “project”? Objectives and tradeoffs Planning and Control in Projects Scheduling Methods Constant-Time Networks.
Operations and Project Management Session 3 Extra Some Additional Details on CPM and PERT.
IE 366 Chapter 6, Section 10 Project Planning and Scheduling.
Project Management: PERT/CPM
Project Planning & Scheduling
Project Management (PERT/CPM) PREPARED BY CH. AVINASH
Project Scheduling Lecture # 1.
Project Planning & Scheduling
Project Management for Business
PROJECT MANAGEMENT WITH CPM/PERT.
Project Scheduling Network Optimization can be used as an aid in the scheduling of large complex projects that consist of many activities A project is.
Slides Prepared by JOHN LOUCKS
Project Management CPM/PERT Professor Ahmadi.
Presentation transcript:

1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Slides by John Loucks St. Edward’s University

2 2 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Chapter 9 Project Scheduling: PERT/CPM n Project Scheduling with Known Activity Times n Project Scheduling with Uncertain Activity Times n Considering Time-Cost Trade-Offs

3 3 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. PERT/CPM n PERT Program Evaluation and Review Technique Program Evaluation and Review Technique Developed by U.S. Navy for Polaris missile project Developed by U.S. Navy for Polaris missile project Developed to handle uncertain activity times Developed to handle uncertain activity times n CPM Critical Path Method Critical Path Method Developed by DuPont & Remington Rand Developed by DuPont & Remington Rand Developed for industrial projects for which activity times generally were known Developed for industrial projects for which activity times generally were known n Today’s project management software packages have combined the best features of both approaches.

4 4 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. PERT/CPM n PERT and CPM have been used to plan, schedule, and control a wide variety of projects: R&D of new products and processes R&D of new products and processes Construction of buildings and highways Construction of buildings and highways Maintenance of large and complex equipment Maintenance of large and complex equipment Design and installation of new systems Design and installation of new systems

5 5 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. PERT/CPM n PERT/CPM is used to plan the scheduling of individual activities that make up a project. n Projects may have as many as several thousand activities. n A complicating factor in carrying out the activities is that some activities depend on the completion of other activities before they can be started.

6 6 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. PERT/CPM n Project managers rely on PERT/CPM to help them answer questions such as: What is the total time to complete the project? What is the total time to complete the project? What are the scheduled start and finish dates for each specific activity? What are the scheduled start and finish dates for each specific activity? Which activities are critical and must be completed exactly as scheduled to keep the project on schedule? Which activities are critical and must be completed exactly as scheduled to keep the project on schedule? How long can noncritical activities be delayed before they cause an increase in the project completion time? How long can noncritical activities be delayed before they cause an increase in the project completion time?

7 7 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Project Network n A project network can be constructed to model the precedence of the activities. n The nodes of the network represent the activities. n The arcs of the network reflect the precedence relationships of the activities. n A critical path for the network is a path consisting of activities with zero slack.

8 8 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. PERT/CPM Critical Path Procedure n Step 1. Develop a list of the activities that make up the project. n Step 2. Determine the immediate predecessor(s) for each activity in the project. n Step 3. Estimate the completion time for each activity. n Step 4. Draw a project network depicting the activities and immediate predecessors listed in steps 1 and 2.

9 9 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. PERT/CPM Critical Path Procedure n Step 5. Use the project network and the activity time estimates to determine the earliest start and the earliest finish time for each activity by making a forward pass through the network. The earliest finish time for the last activity in the project identifies the total time required to complete the project. n Step 6. Use the project completion time identified in step 5 as the latest finish time for the last activity and make a backward pass through the network to identify the latest start and latest finish time for each activity.

10 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. PERT/CPM Critical Path Procedure n Step 7. Use the difference between the latest start time and the earliest start time for each activity to determine the slack for each activity. n Step 8. Find the activities with zero slack; these are the critical activities. n Step 9. Use the information from steps 5 and 6 to develop the activity schedule for the project.

11 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Example: Western Hills Shopping Centre n Western Hills Shopping Centre is planning to modernize the current facility. n We will plan, schedule and complete the expansion project with PERT / CPM.

12 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Example: Western Hills Shopping Centre

13 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Example: Western Hills Shopping Centre n Project Network

14 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Example: Western Hills Shopping Centre n Earliest Start and Finish Times

15 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Earliest Start and Finish Times n Step 1: Make a forward pass through the network as follows: For each activity i beginning at the Start node, compute: Earliest Start Time = the maximum of the earliest finish times of all activities immediately preceding activity i. (This is 0 for an activity with no predecessors.) Earliest Start Time = the maximum of the earliest finish times of all activities immediately preceding activity i. (This is 0 for an activity with no predecessors.) Earliest Finish Time = (Earliest Start Time) + (Time to complete activity i ). Earliest Finish Time = (Earliest Start Time) + (Time to complete activity i ). The project completion time is the maximum of the Earliest Finish Times at the Finish node.

16 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Western Hills Shopping Centre

17 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Latest Start and Finish Times n Step 2: Make a backwards pass through the network as follows: Move sequentially backwards from the Finish node to the Start node. At a given node, j, consider all activities ending at node j. For each of these activities, i, compute: Latest Finish Time = the minimum of the latest start times beginning at node j. (For node N, this is the project completion time.) Latest Finish Time = the minimum of the latest start times beginning at node j. (For node N, this is the project completion time.) Latest Start Time = (Latest Finish Time) - (Time to complete activity i ). Latest Start Time = (Latest Finish Time) - (Time to complete activity i ).

18 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Example: Western Hills Shopping Centre n Latest Start and Finish Times

19 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Determining the Critical Path n Step 3: Calculate the slack time for each activity by: Slack = (Latest Start) - (Earliest Start), or Slack = (Latest Start) - (Earliest Start), or = (Latest Finish) - (Earliest Finish). = (Latest Finish) - (Earliest Finish).

20 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Example: Western Hills Shopping Centre

21 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. n Determining the Critical Path A critical path is a path of activities, from the Start node to the Finish node, with 0 slack times. A critical path is a path of activities, from the Start node to the Finish node, with 0 slack times. Critical Path: A – E – F – G -I Critical Path: A – E – F – G -I The project completion time equals the maximum of the activities’ earliest finish times. The project completion time equals the maximum of the activities’ earliest finish times. Project Completion Time: 26 days Project Completion Time: 26 days Example: Western Hills Shopping Centre

22 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Example: Frank’s Fine Floats n Critical Path

23 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. n In the three-time estimate approach, the time to complete an activity is assumed to follow a Beta distribution. n An activity’s mean completion time is: t = ( a + 4 m + b )/6 t = ( a + 4 m + b )/6 a = the optimistic completion time estimate a = the optimistic completion time estimate b = the pessimistic completion time estimate b = the pessimistic completion time estimate m = the most likely completion time estimate m = the most likely completion time estimate Uncertain Activity Times

24 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. n An activity’s completion time variance is:  2 = (( b - a )/6) 2  2 = (( b - a )/6) 2 a = the optimistic completion time estimate a = the optimistic completion time estimate b = the pessimistic completion time estimate b = the pessimistic completion time estimate m = the most likely completion time estimate m = the most likely completion time estimate Uncertain Activity Times

25 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Uncertain Activity Times n In the three-time estimate approach, the critical path is determined as if the mean times for the activities were fixed times. n The overall project completion time is assumed to have a normal distribution with mean equal to the sum of the means along the critical path and variance equal to the sum of the variances along the critical path.

26 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Example: Daugherty Porta-Vac

27 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Example: Daugherty Porta-Vac n Project Network

28 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Example: Daugherty Porta-Vac

29 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Example: Daugherty Porta-Vac For each activity, calculate the expected time and variance: ET = (a + 4m + b)/6  2 = (( b - a )/6) 2

30 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Example: Daugherty Porta-Vac

31 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Example: Daugherty Porta-Vac n Earliest/Latest Times and Slack

32 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. n Determining the Critical Path A critical path is a path of activities, from the Start node to the Finish node, with 0 slack times. A critical path is a path of activities, from the Start node to the Finish node, with 0 slack times. Critical Path A – E – H – I - J Critical Path A – E – H – I - J The project completion time equals the maximum of the activities’ earliest finish times. The project completion time equals the maximum of the activities’ earliest finish times. Project Completion Time 17 weeks Project Completion Time 17 weeks Example: Daugherty Porta-Vac

33 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Example: Daugherty Porta-Vac n Critical Path (A-C-F-I-K)

34 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. n Probability the project will be completed in 20 weeks  2 =  2 A +  2 E +  2 H +  2 I +  2 J = = = 2.72 = 2.72  = 1.65  = 1.65 z = ( )/  3/1.65 = 1.82 z = ( )/  3/1.65 = 1.82 From the Standard Normal Distribution table (Appendix B): From the Standard Normal Distribution table (Appendix B): P( z < 1.82) = P( z < 1.82) = Example: Daugherty Porta-Vac

35 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Example: Daugherty Porta-Vac

36 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Crashing Activity Times n Crashing – shortening activity times to meet a deadline n If you crash tasks on the critical path, it may change the critical path n To determine just where and how much to crash activity times, we need information on how much each activity can be crashed and how much the crashing process costs. n Activity cost under the normal or expected activity time n Time to complete the activity under maximum crashing (i.e., the shortest possible activity time) n Activity cost under maximum crashing

37 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Example: Two Machine Maintenance Completing the project in 10 days is imperative Completing the project in 10 days is imperative But.. We see that the earliest finish time is 12 days… But.. We see that the earliest finish time is 12 days… Thus, the need to crash. Thus, the need to crash.

38 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Example: Two-Machine Maintenance

39 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Example: Two Machine Maintenance

Example: Two-Machine Maintenance n Determine the answer via LP model n General Model LET LET Xi = finish time for activity i (i = A, B, C, etc)Xi = finish time for activity i (i = A, B, C, etc) Yi = crash time for activity i (i = A, B, C, etc)Yi = crash time for activity i (i = A, B, C, etc) MIN CRASH COST MIN CRASH COST ST ST Finish time + crash time - prev finish time >= Normal timeFinish time + crash time - prev finish time >= Normal time Finish time <= max reduction in timeFinish time <= max reduction in time Finish time for last activity <= max time for projectFinish time for last activity <= max time for project Non-neg.Non-neg.

Example: Two-Machine Maintenance n LET Xi = finish time for activity i (i = A, B, C, D, E) Xi = finish time for activity i (i = A, B, C, D, E) Yi = crash time for activity i (i = A, B, C, D, E) Yi = crash time for activity i (i = A, B, C, D, E) n MIN 100ya + 150yb + 200yc yd ye 100ya + 150yb + 200yc yd ye n ST Xa + ya >= 7 Xa + ya >= 7 Xb + Yb – Xa >= 3 Xb + Yb – Xa >= 3 Xc + Yc >= 6 Xc + Yc >= 6 Xd + Yd – Xc >= 3 Xd + Yd – Xc >= 3 Xe + Ye – Xd >= 2 Xe + Ye – Xd >= 2 Xe + Ye – Xb >= 2 Xe + Ye – Xb >= 2 2 for task e, because it has 2 predecessors

42 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Example: Two Machine Maintenance n ST (Contd) Ya <= 3 Ya <= 3 Yb <= 1 Yb <= 1 Yc <= 2 Yc <= 2 Yb <= 2 Yb <= 2 Ye <= 1 Ye <= 1 Xe <= 10 Xe <= 10 Xi, Yi > 0 Xi, Yi > 0

43 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Example: Two Machine Maintenance n Solution: ActivityTime in DaysCrash A61 B3 C6 D3 E11

44 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. End of Chapter 9