Operations Control Key Sources: Data Analysis and Decision Making (Albrigth, Winston and Zappe) An Introduction to Management Science: Quantitative Approaches.

Slides:



Advertisements
Similar presentations
Using Solver to solve a minimization LP + interpretation of output BSAD 30 Dave Novak Source: Anderson et al., 2013 Quantitative Methods for Business 12.
Advertisements

Linear Programming Problem
Linear Programming Problem. Introduction Linear Programming was developed by George B Dantzing in 1947 for solving military logistic operations.
Lesson 08 Linear Programming
OPSM 301 Operations Management
Linear Programming.
Introduction to Sensitivity Analysis Graphical Sensitivity Analysis
Operations Control Key Sources: Data Analysis and Decision Making (Albrigth, Winston and Zappe) An Introduction to Management Science: Quantitative Approaches.
Ch 3 Introduction to Linear Programming By Kanchala Sudtachat.
CCMIII U2D4 Warmup This graph of a linear programming model consists of polygon ABCD and its interior. Under these constraints, at which point does the.
1/53 Slide Linear Programming: Sensitivity Analysis and Interpretation of Solution n Introduction to Sensitivity Analysis n Graphical Sensitivity Analysis.
BA 452 Lesson A.2 Solving Linear Programs 1 1ReadingsReadings Chapter 2 An Introduction to Linear Programming.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or.
Linear Programming Using the Excel Solver
19 Linear Programming CHAPTER
To accompany Quantitative Analysis for Management, 8e by Render/Stair/Hanna 7-1 © 2003 by Prentice Hall, Inc. Upper Saddle River, NJ Chapter 7 Linear.
Operations Management
Chapter 2: Introduction to Linear Programming
An Introduction to Linear Programming : Graphical and Computer Methods
6s-1Linear Programming CHAPTER 6s Linear Programming.
1 1 Slide LINEAR PROGRAMMING Introduction to Sensitivity Analysis Professor Ahmadi.
LINEAR PROGRAMMING: THE GRAPHICAL METHOD
Linear-Programming Applications
Chapter 3 An Introduction to Linear Programming
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
1 1 Slides by John Loucks St. Edward’s University Modifications by A. Asef-Vaziri.
Linear Programming.
Non-Linear Simultaneous Equations
Solver Linear Problem Solving MAN Micro-computers & Their Applications.
1 1 Slide LINEAR PROGRAMMING: THE GRAPHICAL METHOD n Linear Programming Problem n Properties of LPs n LP Solutions n Graphical Solution n Introduction.
© Copyright 2004, Alan Marshall 1 Lecture 1 Linear Programming.
Chapter 3 Introduction to Optimization Modeling
LINEAR PROGRAMMING SIMPLEX METHOD.
Chapter 19 Linear Programming McGraw-Hill/Irwin
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS ST. EDWARD’S UNIVERSITY.
Linear Programming Topics General optimization model LP model and assumptions Manufacturing example Characteristics of solutions Sensitivity analysis Excel.
1 1 Slide Linear Programming (LP) Problem n A mathematical programming problem is one that seeks to maximize an objective function subject to constraints.
Chapter 6 Supplement Linear Programming.
Managerial Decision Making and Problem Solving
Chapter 7 Introduction to Linear Programming
1 1 Slide © 2005 Thomson/South-Western Chapter 2 Introduction to Linear Programming n Linear Programming Problem n Problem Formulation n A Maximization.
Linear Programming McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Introduction to Linear Programming BSAD 141 Dave Novak.
QMB 4701 MANAGERIAL OPERATIONS ANALYSIS
Linear Programming Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
1 1 Slide © 2001 South-Western College Publishing/Thomson Learning Anderson Sweeney Williams Anderson Sweeney Williams Slides Prepared by JOHN LOUCKS QUANTITATIVE.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or.
A LINEAR PROGRAMMING PROBLEM HAS LINEAR OBJECTIVE FUNCTION AND LINEAR CONSTRAINT AND VARIABLES THAT ARE RESTRICTED TO NON-NEGATIVE VALUES. 1. -X 1 +2X.
Chapter 2 Introduction to Linear Programming n Linear Programming Problem n Problem Formulation n A Maximization Problem n Graphical Solution Procedure.
 Minimization Problem  First Approach  Introduce the basis variable  To solve minimization problem we simple reverse the rule that is we select the.
Chapter 1 Introduction n Introduction: Problem Solving and Decision Making n Quantitative Analysis and Decision Making n Quantitative Analysis n Model.
Data Analysis and Decision Making (Albrigth, Winston and Zappe)
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Supplement 6 Linear Programming.
3 Components for a Spreadsheet Optimization Problem  There is one cell which can be identified as the Target or Set Cell, the single objective of the.
Kerimcan OzcanMNGT 379 Operations Research1 Linear Programming Chapter 2.
Introduction to Linear Programming and Formulation Meeting 2 Course: D Deterministic Optimization Year: 2009.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 Decision Making ADMI 6510 Forecasting Models Key Sources: Data Analysis and Decision Making (Albrigth, Winston and Zappe) An Introduction to Management.
Linear Programming McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
1 Introduction to Linear Programming Linear Programming Problem Linear Programming Problem Problem Formulation Problem Formulation A Simple Maximization.
1 2 Linear Programming Chapter 3 3 Chapter Objectives –Requirements for a linear programming model. –Graphical representation of linear models. –Linear.
An Introduction to Linear Programming
An Introduction to Linear Programming Pertemuan 4
Chapter 2 An Introduction to Linear Programming
Data Analysis and Decision Making (Albrigth, Winston and Zappe)
Introduction to linear programming (LP): Minimization
Linear Programming Problem
Presentation transcript:

Operations Control Key Sources: Data Analysis and Decision Making (Albrigth, Winston and Zappe) An Introduction to Management Science: Quantitative Approaches to Decision Making (Anderson, Sweeny, Williams, and Martin), Essentials of MIS (Laudon and Laudon), Slides from N. Yildrim at ITU, Slides from Jean Lacoste, Virginia Tech, …. ) Mathematical Optimization Models 1

Outline Basics Example Mathematical optimization 2

Basics Goal is to maximize (or minimize) a real function by systematically choosing input values from within an allowed set and computing the value of the function. We will focus on mathematical programming (which is not related at all with computer programming). – Linear and integer functions. 3

Example Just started a home business baking/ “decorating” all natural/low calorie cakes. – Each cake takes 30 minutes to prepare/setup/finish and 20 minutes in the oven. One item in the oven at a time. While baking work on the prep/…. – A cake generates a profit contribution of $14 ( post materials and other production costs ). – Available work time is 8 hours per day (480 mins). – What is the profit per week? Based on the prep/setup/finish time limit, it can output 16 cakes per day. Week profits = 16c/d x 5d x $14/c = $1,120. 4

Example Considering switching into all natural/low calorie pastries. – Profit per pastry = $15 – Each pastry takes 20 minutes to prepare/…/ and 32 in the oven. – Should they? Now the oven is the constraint. A maximum of 15 pastries per day. Week profits = 15p/d x 5d x $15/p = $1,125. So, not much of an improvement. Is there a better option? a combination? 5

Example Can they make 9 of each? – Oven used time = 20 x x 9 = 468 – Prep time = 30 x x 9 = 450 – Yes. Can they make 10 of each? – Not without breaking the oven limit. – There is a mathematical method to find the optimal solution. 6

Mathematical optimization All MP problems have constraints that limit the degree to which the objective can be pursued. – Budgets, inventories, materials. – Resources (people, equipment, knowledge). – Customers and demand. – Time. A feasible solution satisfies all the problem's constraints. – A problem could have many feasible solutions. – Some feasible solutions could be very poor. 7 Mathematical Programming

Mathematical optimization An optimal solution is a feasible solution that results in the largest possible objective function value when maximizing (or smallest when minimizing). – Typically only one, but could be a few. – However, as we will discuss later, there are multiple criteria in most business problems. – No optimal decisions but tradeoffs. 8 Mathematical Programming

Mathematical optimization A problem can have no feasible solutions. – Constraints are too many / too tight. – One or more constraints must be relaxed/changed. We want to invite 100 people to the wedding. Each seat costs $100. The budget is $8,0000. A problem could be unbounded. Typically there is something wrong in the definition of the problem. – Always a limit of space, money, time. 9 Mathematical Programming

Example Decision variables – c = number of cakes – p = number of pastries Objective function (to be maximized) – Profits = 14c + 15p Constraints – Oven time : 20c + 32p ≤ 480 – Prep time: 30c + 20p ≤ 480 – c ≥ 0 and p ≥ 0 = we cannot make negative amounts 10

Ex. p= pastries c = cakes

Ex. p= pastries c = cakes

Example Optimal solutions in the vertices. Here, given an integer number of cakes and pastries, “close” to them. 13 cakespastriesweekly profit , , , , , ,295

Mathematical optimization Linear Programming Both the objective function and the constraints are linear functions. – Linear functions are functions in which each variable appears in a separate term raised to the first power and is multiplied by a constant (which could be 0). – Linear constraints are linear functions that are restricted to be "less than or equal to", "equal to", or "greater than or equal to" a constant. Integer Programming One or more variables can only take integer values. 14

Model formulation The process of transforming a business problem (its description) into a mathematical model. Key steps – Identify what can be controlled: the decision variables (DV). – Define the objective function. Maximize or minimize? How it connects to the DV ? Write in terms of the DV. – Define the constraints. What is the bound? How each C connects to the DV ? Write in terms of the DV 15

Slack /Surplus variables Helps understand the level of “unused” resources or the level generated above a minimum. – Slack : the amount of an available resource that is not used, for example budget not used. – Surplus : the amount of “something” above a minimum requirement, for example units made of type above the demand. – For the first example, slacks are? Binding constraints = those with no slack/surplus. 16

Solving with Excel’s Solver We will use Excel to setup and solve demo problems. Add-in called Solver. – A low level solution engine. – Optimality is not guaranteed. – Small problems (few variables and constraints). 17

Sensitivity analysis In MO optimization problems we perform what if analysis to determine effect on the values of the decision variables. – The effect of the RHS constraints. – The effect of the objective function coefficients. – The effect of constraint coefficients. 18

Types of MO problems Production Marketing Blending Financial Capital Budgeting/project selection Assignment Trans-shipment Location 19 Web resource