CSCW – Module 2 – Page 1 P. Dillenbourg & N. Nova Module 2 : Analyzing group interactions.

Slides:



Advertisements
Similar presentations
Sesión 3. Análisis de redes sociales
Advertisements

Computer Supported Cooperative Work by an Agent Oriented Software Engineering Approach: CSCW by AOSE Darlinton Carvalho
8 September 2008 University Montpellier 2 ; Faculty of Sciences Department of Informatics, Master of Informatics Stefano A. Cerri LIRMM: Un. Montpellier2.
Visualizing Scholarly Discourse in eScience Simon Buckingham Shum Knowledge Media Institute Open University, UK In collaboration with: John Domingue, Enrico.
CONCEPTUAL WEB-BASED FRAMEWORK IN AN INTERACTIVE VIRTUAL ENVIRONMENT FOR DISTANCE LEARNING Amal Oraifige, Graham Oakes, Anthony Felton, David Heesom, Kevin.
Prof. Dr. W. Prinz Summary of the STREP session 13. April 2005 Wolfgang Prinz The following slides summarize the presentations.
GMD German National Research Center for Information Technology Darmstadt University of Technology Perspectives and Priorities for Digital Libraries Research.
Online Course Facilitation Building a Community of Learners.
Methodology and Explanation XX50125 Lecture 1: Part I. Introduction to Evaluation Methods Part 2. Experiments Dr. Danaë Stanton Fraser.
Weeks 8(2) 2007IS33 CSCW (cont.) 1 COMP3470 IS33 People-Centred Information Systems Development Week 8: Lecture 2 Domain: CSCW School of Computing FACULTY.
School of something FACULTY OF OTHER School of Computing FACULTY OF ENGINEERING Evaluation Kleanthous Styliani
Class Investigation TEAM: Teacher Explorations of Atmospheric Measurements T.J. Trout-KansasKathy Rome-KansasDiana Soehl-New YorkBarbara Fortier-Maine.
Computer-Supported Collaborative Learning (CSCL), Virtual Math Teams (VMT), Group Cognition Gerry Stahl.
Instructional Design & Online Learning Greg Kearsley.
Project Management Network for Excellence in Learning & Teaching PMnetwork for Excellence in Learning & Teaching Fifth Workshop Bournemouth University.
44212: Web-site Development
The Future of e-Learning Inclusive learning objects using RDF Dr Terence Love Dept of Design Curtin University
Lesson 1: Introduction to IT Business and Careers
Creating Collaborative Partnerships
Social Network Analysis and Its Applications By Paul Rossman Indiana University of Pennsylvania.
0 General information Rate of acceptance 37% Papers from 15 Countries and 5 Geographical Areas –North America 5 –South America 2 –Europe 20 –Asia 2 –Australia.
USABILITY AND EVALUATION Motivations and Methods.
Learning Technologies at EPFL 1.Evolution of e-learning 2.Strategy & Funding CRAFT P. Dillenbourg,
CSCW – Evaluation P. Dillenbourg & N. Nova Evaluation & Exam.
THAI Técnicas de Investigación Cualitativa y Mixta S5. Análisis de redes sociales y métodos mixtos Alejandra Martínez Monés 28 de septiembre 2010.
Groupware to Support Distributed & Collocated Software Engineering Student Group Projects Sarah Drummond RISE Dept. Computer Science University of Durham.
CSCW – Module 11 – Page 1 P. Dillenbourg & N. Nova Module 11 : Synthesis.
Presenter: Teng-Chih Yang Professor: Ming-Puu Chen Date: 10/ 28/ 2009 Data mining in course management systems: Moodle case study and tutorial Romero,
Pierre Dillenbourg, On-Line Educa, Berlin 2005 Should mobile learning be as boring as e-learning ?
Statistical Analysis I have all this data. Now what does it mean?
Architecture and leadership in knowledge intensive networks: the case of internet forums on photo Paul Muller , Claude Guittard , Julien Pénin   GRANEM,
Lesson 5 – Looking at the Output MATSim Tutorial, 2011, Shanghai 1.
Unit 3 – Problem Solving Vale Market Research is a large market research company who provides market research solutions to high profile blue chip companies.
CSCW – Module 7 – Page 1 P. Dillenbourg & N. Nova Module 7 : Shared Workspaces.
Sarah Drummond Dept. Computer Science University of Durham, UK MSc Research An Investigation into Computer Support for Cooperative Work in Software Engineering.
Qualitative Analysis Information Studies Division Research Workshop Elisabeth Logan.
Dahnish Hussain Assignment 1 Information and Creative Technology.
 The ability to develop step by step procedures for solving problems  She uses algorithmic thinking by setting up her charts.
European Knowledge Platform basics. „....integration functions are becoming increasingly important.“ The vicious circle: systems introduced to reduce.
James Williams e: eTutor Project SUMMARY OF KEY FINDINGS for 2 Pilot studies of the.
CSE Introduction to Computing Concepts. Outline  What is an application program?  What is Excel?  Creating a Simple Workbook  Writing Formulas.
COM1721: Freshman Honors Seminar A Random Walk Through Computing Lecture 2: Structure of the Web October 1, 2002.
1-1 System Development Process System development process – a set of activities, methods, best practices, deliverables, and automated tools that stakeholders.
FRE 2661 CSCL Conference, Bergen, june 2003C. Reffay, T. Chanier 1 How Social Network Analysis can help to measure cohesion in collaborative distance-learning.
Testing & modeling users. The aims Describe how to do user testing. Discuss the differences between user testing, usability testing and research experiments.
1 STAT 500 – Statistics for Managers STAT 500 Statistics for Managers.
Introduction to Physical Science. A-Science- A-Science- Is a way of learning about the universe and it’s natural laws (Gravity) 1- Skills of scientist.
Paperless Publishing web publishing. ebooks. digital paper.
1 Chapter 12. Web Information Integration Using Multiple Character Agents Soft computing Laboratory Yonsei University October 27, 2004.
CyberInfrastructure for Network Analysis Importance of, contributions by network analysis Transformation of NA Support needed for NA.
Computer supported cooperative work -Basic concepts
Improving the Social Nature of OnLine Learning Tap into what students are already doing Tap into what students are already doing Educause SWRC07 Copyright.
CSCW – Module 5 – Page 1 P. Dillenbourg & N. Nova Module 5 : Mediating Informal Communication.
CSCW – Module 0 – Page 1 P. Dillenbourg & N. Nova C S C W C omputer Supported Cooperative Work Prof. Pierre Dillenbourg Nicolas Nova CRAFT – I&C.
STATISTICS FOR SCIENCE RESEARCH (The Basics). Why Stats? Scientists analyze data collected in an experiment to look for patterns or relationships among.
Introduction to Matrices and Statistics in SNA Laura L. Hansen Department of Sociology UMB SNA Workshop July 31, 2008 (SOURCE: Introduction to Social Network.
Introduction to Computer Engineering Lesson 5 Intro Eng1.
Goals of Upper Division Laboratory Experiences Experimentation –design and conduct experiments –analyze data –draw valid conclusions from data –identify.
For more course tutorials visit PSYCH 625 Entire Course PSYCH 625 Week 1 Individual Assignment Basic Concepts in Statistics Worksheet.
Core Math Tools (CMT) Kyle Linford.
School of Business Administration
STATISTICS FOR SCIENCE RESEARCH
measurement challenges for collaborative learning research
Knowledge Management Systems
Focus Areas Business and Applied Business Fine Arts, Design, and Media
Network Visualization
Information Science in International Perspective
Blended Learning: Improve Disaster Risk Management in India by Using Knowledge-Base and Statistics 24/02/2019 An introduction course on InWEnt Blended-learning.
Human Computer Interaction
Testing & modeling users
Presentation transcript:

CSCW – Module 2 – Page 1 P. Dillenbourg & N. Nova Module 2 : Analyzing group interactions

CSCW – Module 2 – Page 2 P. Dillenbourg & N. Nova Structural Roles Functional Roles

CSCW – Module 2 – Page 3 P. Dillenbourg & N. Nova Engineering approachScientific approach Experiments Problems Suggestions Design Improved System Experiment Results Hypothesis Knowledge Experiment CSCW Course Project 2 CSCW Course Project 1 Awareness of changes on light duration Beep if chat input … Prototype- testing cycle Hypothethis testing

CSCW – Module 2 – Page 4 P. Dillenbourg & N. Nova Scientific approach Experiment Results Hypothesis Experiment CSCW Course Project 1 D1: Qualitative analysis of task distribution D2: Quantitative comparison of task performance D3: Qualitative and quantitative dialogue analysis Experimental research covers a variety of data analysis methods Log Files Results Project 1 Report

CSCW – Module 2 – Page 5 P. Dillenbourg & N. Nova Scientific approach Experiment Hypothesis Experiment CSCW Course Project 1 D2: Quantitative comparison of task performance Log Files Results Inferential Statistics: Group A has a performance 7.2% below group B, is that a real effect or random variation?

CSCW – Module 2 – Page 6 P. Dillenbourg & N. Nova Scientific approach Experiment Hypothesis Experiment CSCW Course Project 1 D1: Qualitative analysis of task distribution Log Files Results

CSCW – Module 2 – Page 7 P. Dillenbourg & N. Nova Deliverable 1  Scientific approach Experiment Hypothesis Experiment D1: Qualitative analysis of task distribution Log Files Results Condition S Condition F Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Explanation & Results

CSCW – Module 2 – Page 8 P. Dillenbourg & N. Nova How does a team organize its collaborative process ? Self OrganisationFormal Organisation Descriptive “How do they collaborate?” Prescriptive “How they should collaborate!” WORKFLOWS (module 1) Social Network Analysis ( module 2)

CSCW – Module 2 – Page 9 P. Dillenbourg & N. Nova Messages sent PierrePatrick PatrickJean PierreMarc JeanPatrick LucieJean JeanPierre PierreLucie LucieJean JeanLucie LuciePatrick PierrePatrickJeanLucie Marc Pierre01011 Patrick00100 Jean11010 Lucie01200 Marc00000 Row i sent message to column j Simple count of interactions

CSCW – Module 2 – Page 10 P. Dillenbourg & N. Nova Messages sent + rating PierrePatrick+ PatrickJean- PierreMarc+ JeanPatrick- LucieJean+ JeanPierre- PierreLucie- LucieJean+ JeanLucie+ LuciePatrick- PierrePatrickJeanLucie Marc Pierre Patrick Jean Lucie Marc00000 Row i sent message to column j Column j rated message sent by row i Weigthed count of interactions

CSCW – Module 2 – Page 11 P. Dillenbourg & N. Nova PierrePatrickJeanLucie Marc Pierre01111 Patrick10000 Jean10000 Lucie10000 Marc10000 Network Graph Pierre Jean Patrick LucieMark PierrePatrickJeanLucie Marc Pierre01001 Patrick10100 Jean01010 Lucie00101 Marc10010 Pierre Jean Patrick Lucie Mark Star Graph Circle Graph

CSCW – Module 2 – Page 12 P. Dillenbourg & N. Nova PierrePatrickJeanLucie Marc Pierre01115 Patrick10000 Jean10000 Lucie10000 Marc50000 Network Representations Pierre Jean Patrick LucieMark PierrePatrickJeanLucie Marc Pierre01005 Patrick10100 Jean01010 Lucie00101 Marc50010 Pierre Jean Patrick Lucie Mark Star Graph Circle Graph

CSCW – Module 2 – Page 13 P. Dillenbourg & N. Nova PierrePatrickJeanLucie Marc Pierre01115 Patrick10000 Jean10000 Lucie10000 Marc50000 Network Representation Pierre Jean Patrick Lucie Mark PierrePatrickJeanLucie Marc Pierre01005 Patrick10100 Jean01010 Lucie00101 Marc50010 Pierre Jean Patrick Lucie Mark Star Graph Circle Graph

CSCW – Module 2 – Page 14 P. Dillenbourg & N. Nova PierrePatrickJeanLucie Marc Pierre01011 Patrick00100 Jean11010 Lucie01200 Marc00000 Row i sent message to column j Simple count of interactions Pierre Patrick Lucie Mark Jean

CSCW – Module 2 – Page 15 P. Dillenbourg & N. Nova PierrePatrickJeanLucie Marc Pierre01011 Patrick00100 Jean11010 Lucie01200 Marc00000 Simple count of interactions In-degreeOut-degree Pierre13 Patrick31 Jean33 Lucie23 Marc10 In-degreeOut-degree Isolate00 Transmitter 0>0 Receiver>00 Carrier>0>0 Type of Nodes (Hage & HArary 1983) Centrality index (prestige, proeminence, ….)

CSCW – Module 2 – Page 16 P. Dillenbourg & N. Nova Row i sent message to column j Weithed count of interactions Pierre Patrick Lucie Mark Jean PierrePatrickJeanLucie Marc Pierre Patrick Jean Lucie Marc00000

CSCW – Module 2 – Page 17 P. Dillenbourg & N. Nova Specific software: UCINET Plus 100 others Nice tutorial :

CSCW – Module 2 – Page 18 P. Dillenbourg & N. Nova Social interactions data Matrix of distances among individuals (groups) Visual Representation Social Network Analysis Multidimensional Scaling

CSCW – Module 2 – Page 19 P. Dillenbourg & N. Nova Social interactions data Matrix of distances among individuals (groups) Visual Representation Social Network Analysis Multidimensional Scaling X posted message to Y X is chatting with Y Y rates X’s message as value V (reputation systems, roadforum,…) X would like to spend holidays with Y X read Y’s blog or journal (EPFL) X has downloaded Y’s solution X has borrowed same book as Y (EPFL) X has bought same book as Y (amazon) X has read the same page web as Y (social navigation)

CSCW – Module 2 – Page 20 P. Dillenbourg & N. Nova Sustaining Collaboration within a Learning Community in Flexible Engineering Education Anh Vu Nguyen, Denis Gillet, Stephane Sire, EPFL clique

CSCW – Module 2 – Page 21 P. Dillenbourg & N. Nova Social interactions data Matrix of distances among individuals (groups) Visual Representation Social Network Analysis Multidimensional Scaling

CSCW – Module 2 – Page 22 P. Dillenbourg & N. Nova

CSCW – Module 2 – Page 23 P. Dillenbourg & N. Nova Judith Donath, Karrie Karahalios and Fernanda Viégas MIT Media Lab

CSCW – Module 2 – Page 24 P. Dillenbourg & N. Nova Social Network Fragments friends school world website

CSCW – Module 2 – Page 25 P. Dillenbourg & N. Nova TECFA: Visualizing On-Line Communities

CSCW – Module 2 – Page 26 P. Dillenbourg & N. Nova Visualizing On-Line Communities

CSCW – Module 2 – Page 27 P. Dillenbourg & N. Nova A Model of Human Crowd Behavior: Group Inter- Relationship and Collision Detection Analysis* S. R. Musse and D. Thalmann Computer Graphics Lab (LIG), EPFL Computer Animation and Simulations '97, Proc. Eurographics workshop, Budapest, Springer Verlag, Wien 1997, pp

CSCW – Module 2 – Page 28 P. Dillenbourg & N. Nova Visualizing Pairs with SNA?? Pierre Lucie

CSCW – Module 2 – Page 29 P. Dillenbourg & N. Nova How does a team organize its collaborative process ? Self OrganisationFormal Organisation Descriptive “How do they collaborate?” Prescriptive “How they should collaborate!” WORKFLOWS (module 1) Social Network Analysis ( module 2)

CSCW – Module 2 – Page 30 P. Dillenbourg & N. Nova How does a team organize its collaborative process ? Descriptive “How do they collaborate?” Prescriptive “How they should collaborate!” scale Semi-Structured Communication Interfaces YOUR PROJECT Workflows Social Network Analysis Standards, norms, rules, laws,…. Culture, leadership, social change

CSCW – Module 2 – Page 31 P. Dillenbourg & N. Nova Jermann & Dillenbourg (CRAFT EPFL) Group self-regulation: Socio-Cognitive Mirrors

CSCW – Module 2 – Page 32 P. Dillenbourg & N. Nova Social interactions data Analysing Task Distribution Visual Representation X tune light L, parameter P X posted message … By hand Simulation LOG FILES

CSCW – Module 2 – Page 33 P. Dillenbourg & N. Nova Deliverable 1  Scientific approach Experiment Hypothesis Experiment D1: Qualitative analysis of task distribution Log Files Results Condition S Condition F Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Explanation & Results

CSCW – Module 2 – Page 34 P. Dillenbourg & N. Nova Tâche: un sujet fait A et B, l’autre fait C et D Concurrent: les deux sujets font A, B, C et D Rôle: un sujet fait A, B, C et D ABCD S1 S2

CSCW – Module 2 – Page 35 P. Dillenbourg & N. Nova ABCD Intersections S2 s’occupe de A et B S1 s’occupe de C et D

CSCW – Module 2 – Page 36 P. Dillenbourg & N. Nova « Grace »« Dan » Performance Temps Réglages Messages Temp de composition

CSCW – Module 2 – Page 37 P. Dillenbourg & N. Nova

CSCW – Module 2 – Page 38 P. Dillenbourg & N. Nova Réglages: chaque sujet s’occupe de deux intersections Plans: un sujet planifie les changements concernant toutes les intersections

CSCW – Module 2 – Page 39 P. Dillenbourg & N. Nova Part 1. Groupware Analysis Coordinating teamwork: Workflows Coordinating teamwork: WorkflowsRunning four experiments Analyzing group interaction + explaining log files structure Inferential statistics (P. Jermann) CO Building a graphical representations of group interactions  D2: Group representation