The pixel ionisation chamber: a detector for beam monitor and dosimetry A.Boriano 1,2, F.Bourhaleb 2,3, R. Cirio 2, M. Donetti 2,4, F. Marchetto 2, C.

Slides:



Advertisements
Similar presentations
A selection of Geant4 medical physics applications
Advertisements

1 500cm 83cm 248cm TPC DETECTOR 88us 1MIP = 4.8 fC = 3 x10 4 e Dynamic : 30 MIP S / N = 30:1 1MIP = 4.8 fC = 3 x10 4 e Dynamic : 30 MIP S / N = 30:1 LATERAL.
Development of novel Silicon detectors for next generation nuclear physics experiments (SIDET) O. Kiselev University of Mainz JRA21/JRA22.
Electronics for large LAr TPC’s F. Pietropaolo (ICARUS Collaboration) CRYODET Workshop LNGS, March 2006.
A. Kluge January 25, Aug 27, 2012 Outline NA62 NA62 Specifications Specifications Architecture Architecture A. Kluge2.
Faiza Bourhaleb Dipartimento di fisica sperimentale
1 Research & Development on SOI Pixel Detector H. Niemiec, T. Klatka, M. Koziel, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor, M. Szelezniak AGH – University.
Bulk Micromegas Our Micromegas detectors are fabricated using the Bulk technology The fabrication consists in the lamination of a steel woven mesh and.
Measurement of Absorbed Dose (6)
5ns Peaking Time Transimpedance Front End Amplifier for the Silicon Pixel Detector in the NA62 Gigatracker E. Martin a,b J. Kaplon b, A. Ceccucci b, P.
Budker Inst. of Physics IHEP Protvino MEPHI Moscow Pittsburg University.
A pixel chamber as beam monitor for IMRT S. Belletti 4, A.Boriano 6, F.Bourhaleb 5,7, R. Cirio 6, M. Donetti 5,6, B. Ghedi 4, E. Madon 2, F. Marchetto.
Performances of a pixel ionization chamber to monitor a voxel scan hadron beam A.Boriano 3, F.Bourhaleb 2,3, R. Cirio 3, M. Donetti 2,3, F. Marchetto 3,
CLIC Collaboration Working Meeting: Work packages November 3, 2011 R&D on Detectors for CLIC Beam Monitoring at LBNL and UCSC/SCIPP Marco Battaglia.
The Magic Cube and the Pixel Ionization Chamber: detectors for monitor and dosimetry of radiotherapy beams S. Amerio 1, A. Boriano 2, F. Bourhaleb 2,3,
Application of a 2-D ionization chamber array for dose verification of dynamic IMRT with a micro-MLC Fujio ARAKI, PhD 1, S. TAJIRI 2, H. TOMINAGA 2, K.
, GSI DarmstadtMartin Winkler, GSI DIRACsecondary Beams Annual report on Large-area beam tracking detectors for fast extracted beams Task 8 –
Commissione Nazionale per la Formazione e il TrasferimentoTecnologico (CNFTT) External TT Network Meeting Sandro Centro, CNFTT, I.L.O. CERN 31 May 2007.
Montpellier, November 12, 2003Vaclav Vrba, Institute of Physics, AS CR 1 Vaclav Vrba Institute of Physics, AS CR, Prague CALICE ECal Status Report.
Background: VLSI Courses at Lafayette  ECE VLSI Circuit Design  Original form: “tall thin designer”  VLSI Processing  CMOS Transistor Characteristics.
Pion Showers in Highly Granular Calorimeters Jaroslav Cvach on behalf of the CALICE Collaboration Institute of Physics of the ASCR, Na Slovance 2, CZ -
A solution for dosimetry and quality assurance in IMRT and hadrontherapy: the pixel ionization chamber. S. Amerio a, S. Belletti b, A. Boriano c, R. Cirio.
Similar Shapes Area & Volume Factor. 4 3 ? 6 ?? 1.
MAMUD Magnetized hadronic calorimeter and muon veto for the K +   +  experiment L. DiLella, March 29, 2005 Purpose:  Provide pion – muon separation.
Goddard February 2003 R.Bellazzini - INFN Pisa A new X-Ray Polarimeter based on the photoelectric effect for Black Holes and Neutron Stars Astrophysics.
Elastic scattering  + Si: can be a source of background? F. Marchetto INFN - Torino The overall level of background due to interaction of  /K with Si-atoms.
Pixel detector development: sensor
W. Kucewicz a, A. A.Bulgheroni b, M. Caccia b, P. Grabiec c, J. Marczewski c, H.Niemiec a a AGH-Univ. of Science and Technology, Al. Mickiewicza 30,
F.Murtas1 LUMI GEM Bremsstrahlung Dafne Bhabha Dafne Upgrade.
The DAMPE STK G. Ambrosi INFN Perugia. The DAMPE Detector Mass: 1480 Kg Power: 600 W Data: 16 Gbyte/day Liftime: 5 years 2.
FrontierScience G.P.1 MATRIX an innovative Pixel Ionization Chamber for Online Monitoring of Hadrontherapy Treatments Giuseppe Pittà.
1 19 th January 2009 M. Mager - L. Musa Charge Readout Chip Development & System Level Considerations.
DHCAL Jan Blaha R&D is in framework of the CALICE collaboration CLIC08 Workshop CERN, 14 – 17 October 2008.
CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Gigatracker Front end based on ultra fast NINO circuit P. Jarron, G. Anelli, F. Anghinolfi,
Squared and Cubed Conversion Factors
Ideas for a new INFN experiment on instrumentation for photon science and hadrontherapy applications – BG/PV group L. Ratti Università degli Studi di Pavia.
WP 7 (RDH) Detector for high intensity beam WP 6 (IRPT) New TERA chip development Leslie Karen Fanola Guarachi.
FEE for Muon System (Range System) Status & Plans G.Alexeev on behalf of Dubna group Turin, 16 June, 2009.
AAPM TG-51 Protocol (Med Phys 26: , 1999)
APPLICATIONS OF HEP TECHNIQUES POSTER REVIEW E. LORENZ SOME GENERAL COMMENTS NUCLEAR MEDICAL APPLICATIONS NUCLEAR IMAGING RADIATION MONITORING ACCELERATORS.
The Xth Vienna Conference on Istrumentation – February R.Bellazzini - INFN Pisa Reading a GEM with a VLSI pixel ASIC used as a direct charge.
Ultra-Fast Silicon Detector 1 This report is a summary of what was shown at IEEE. Nicolo Cartiglia, INFN, Torino - UFSD - RD50 CERN 2014 Nicolo Cartiglia.
Dosimetry with diamond detectors G. Gervino1, C. Marino1, F
Design consideration on thin LGAD sensors
FBK / INFN Roma, November , 17th 2009 G. Darbo - INFN / Genova
Radiation Monitor: Concepts, Simulation for an Advanced Read Out
A proposal to equip the high eta muon stations with High Rate GRPC
R. DeLeo1,A. G. Argentieri2,T. Bellunato3,M. Calvi3,E. Cisbani4,F
Dr: Mohamed Afifi By Lecturer Radiological Science
A treatment planning code for hadrontherapy,ANCOD++.
GLAST LAT tracker signal simulation and trigger timing study
Frontier Detectors for Frontier Physics presented by Paolo Musico
Valerio Re (INFN-Pavia) on behalf of the RD53 collaboratios
The digital read-out for the CSC system of the TOTEM experiment at LHC
prototype PCB for on detector chip integration
GEM-based Digital Hadron Calorimetry for SiD
Beam Tests of Ionization Chambers for the NuMI Neutrino Beam Monitoring System MINOS.
The electronics system of the TOTEM T1 telescope
The digital read-out for the CSC system of the experiment TOTEM at LHC
GEM-based Digital Hadron Calorimetry for SiD
The digital read-out for the CSC system of the TOTEM experiment at LHC
The Hadrontherapy Geant4 advanced example
Surface Area.
AIMS 1- Build SDHCAL prototype of 1m3 as close as possible to the one
Beam Test Results for the CMS Forward Pixel Detector
ASPID (Application of Silicon Photomultipliers to Imaging Detectors)
Simulation of Light Ion Fragmentation Experiments Using GEANT4
CBM-MUCH-RPC Electronics
Why silicon detectors? Main characteristics of silicon detectors:
Converting Between Measures
Presentation transcript:

The pixel ionisation chamber: a detector for beam monitor and dosimetry A.Boriano 1,2, F.Bourhaleb 2,3, R. Cirio 2, M. Donetti 2,4, F. Marchetto 2, C. Peroni 2, C.J. Sanz Freire 2^ 1 ASP, Torino, Italy 2 University and INFN, Torino, Italy 3 ICSC WorldLab, Lausanne, Switzerland 4 TERA Foundation, Novara, Italy ^ partially supported by IBA, Louvaine- la-Neuve, Belgium PTCOG XXXV – PMRC Tsukuba – November

PTCOG XXXV - PMRC Tsukuba November Roberto Cirio INFN Torino 2 Improving the Magic Cube (3D dosimeter for hadron beams) The IBA Magic Cube at NPTC in Boston The Magic Cube can be bought at Physalus

PTCOG XXXV - PMRC Tsukuba November Roberto Cirio INFN Torino 3 The pixel chamber parallel plate ionization chamber anode segmented in 1024 square pixels pixel dimension = 7.5 X 7.5 mm 2 sensitive area = 24 X 24 cm 2 1 mm water equivalent thickness front-end electronics, located around the chamber, perform analog to digital conversion

PTCOG XXXV - PMRC Tsukuba November Roberto Cirio INFN Torino 4 Front-end electronics located around the chamber we have developed a full custom chip (TERA05) every chip has 64 channels that convert the collected charge in digital output

PTCOG XXXV - PMRC Tsukuba November Roberto Cirio INFN Torino 5 TERA05 Very Large Scale Integration (VLSI) i  f conversion output  Q int 100 fC<charge quantum<800 fC I max = 4  A 64 channels 16 bit wide counters multiplexed digital output dead-time free readout max read out = 10 MHz channel # 1 channel # 64

PTCOG XXXV - PMRC Tsukuba November Roberto Cirio INFN Torino 6 Linearity at 100 fC charge quantum 20 pA < I < 0.6  A Linearity better than 0.7 %

PTCOG XXXV - PMRC Tsukuba November Roberto Cirio INFN Torino 7 Linearity at 600 fC charge quantum 10 pA < I < 2  A Linearity better than 0.3 %

PTCOG XXXV - PMRC Tsukuba November Roberto Cirio INFN Torino 8 Spread of charge quanta RMS  1 % I = nA 26 chips

PTCOG XXXV - PMRC Tsukuba November Roberto Cirio INFN Torino 9 Reproducibility of charge quantum I = nA Qc = 600 fC 24 ºC < T < 27 ºC 1 month 6 measures

PTCOG XXXV - PMRC Tsukuba November Roberto Cirio INFN Torino 10 Data acquisition connection detector-data acquisition by twisted pair flat cables (100 m maximum lenght) max rate transfer = 10 MHz = 40 Mb/s read out transfer time = 50  s read out cycle total time = 100  s real time operating system <100 m

PTCOG XXXV - PMRC Tsukuba November Roberto Cirio INFN Torino 11 Beam test at GSI Beam characteristics raster-scan delivery system 270 MeV/u, C +6, 8.8 mm (FWHM) data acquisition synchronized with raster-scan Aims spatial resolution homogeneity of response

PTCOG XXXV - PMRC Tsukuba November Roberto Cirio INFN Torino 12 Spatial resolution Spatial resolution  < 0.2 mm

PTCOG XXXV - PMRC Tsukuba November Roberto Cirio INFN Torino 13 Homogeneity of response 18 × 18 cm 2 uniform field  = 1.1 %  = 2.0 %

PTCOG XXXV - PMRC Tsukuba November Roberto Cirio INFN Torino 14 Beam test at PSI Beam characteristics spot-scan delivery system 138 MeV/u, p, 7 mm (FWHM) data acquisition non-synchronized with spot-scan Aims Intercomparison

PTCOG XXXV - PMRC Tsukuba November Roberto Cirio INFN Torino 15 Comparison with PSI proton beam transverse profile

PTCOG XXXV - PMRC Tsukuba November Roberto Cirio INFN Torino 16 Field shape varying with time 6 MV Elekta accelerator at S.Anna hospital in Torino 1.2x1.2 cm 2 square field going to 12.4x12.4 cm 2 square field …very good for IMRT with photons too …! (cfr. collaboration with IBA/Wellhofer/Scanditronix)

PTCOG XXXV - PMRC Tsukuba November Roberto Cirio INFN Torino 17 Conclusions parallel plate pixel ionization chamber big sensitive area 1024 independent measurements VLSI electronics dead-time free readout one dead-time free readout of all 1024 channels every 100  s  GOOD MONITOR FOR SCANNED BEAMS Next step might be a real-3D-Magic Cube (  dosimeter)