Impulse and Momentum and Collisions and Stuff We will now quantify exactly how it hits the fan.

Slides:



Advertisements
Similar presentations
Chapter 9 Linear Momentum.
Advertisements

Momentum and Impulse. What is Momentum? Momentum – The product of the mass and velocity of an object. Has magnitude and direction. Momentum = p = mv P.
Chapter 9: Impulse, Momentum, and Collisions  Up to now we have considered forces which have a constant value (except the spring) throughout the motion.
Honors Physics Impulse and Momentum. Impulse = Momentum Consider Newton’s 2 nd Law and the definition of acceleration Units of Impulse: Units of Momentum:
Impulse and Momentum Honors Physics.
MOMENTUM AND IMPULSE Chapter 7.
Momentum and Impulse So far we’ve studied the properties of a single object; i.e. its motion and energy How do we analyze the motion of two or more objects.
Introduction to Physical Science Monday, Wednesday, Thursday Tom Burbine
Notes Chapter 8 Momentum Objectives:
ConcepTest Clicker Questions College Physics, 7th Edition
AP Physics Review Ch 7 – Impulse and Momentum
Chapter 6 Momentum Impulse Impulse Changes Momentum Bouncing
Section 73 Momentum.
Momentum and Impulse.
CHAPTER 6. Momentum- the product of the mass and velocity of an object. It is equal to In general the momentum of an object can be conceptually thought.
Momentum Chapter 8. Momentum Chapter 8 Objectives Define momentum. Define impulse and describe how it affects changes in momentum. Explain why an impulse.
Momentum Yet another physics mystery explained. Momentum defined Momentum = mass X velocity Symbol for momentum = “p” Symbol for mass= “m” Symbol for.
AMY SHANTA BABOOLAL PHYSICS PROJECT: MECHANICS. ARISTOTLE’S ARGUMENTS One of his well known arguments is: to understand change, a distinction must be.
Conservation of Momentum Physics 11. Quick Questions to Discuss with neighbour  If you throw a ball against a wall, which of the three impulses is the.
A bowling ball and ping-pong ball are rolling towards you with the same momentum. Which ball is moving toward you with the greater speed? A) the bowling.
Chapter 9: Momentum and Conservation Newton’s Laws applied.
Today: Momentum – chapter 9 11/03 Finish momentum & review for exam 11/8 Exam 2 (5 – 8) 11/10 Rotation 11/15 Gravity 11/17 Waves & Sound 11/22 Temperature.
1 Momentum and Its Conservation Or How I Learned to Love Collisions.
1 PPMF102– Lecture 3 Linear Momentum. 2 Linear momentum (p) Linear momentum = mass x velocity Linear momentum = mass x velocity p = mv p = mv SI unit:
Momentum and Its Conservation LEQ: What is Momentum?
 Momentum  A.K.A. The difference between moving and standing still.
Mo’ mentum. Whiteboard warmup! A 145-g softball is pitched horizontally toward home plate with a speed of 165 m/s. The batter hits a direct line drive,
Momentum and Impulse. Answer Me!!! Forces cause objects to start moving. What keeps an object moving after the force is no longer applied?
Momentum!!! Physics Mr. Padilla.
Momentum Chin-Sung Lin.
Impulse and Momentum Dr P Ramalingam October 13, 2007.
Momentum, impulse, and collisions Chapter 8 Sections 1-5.
Momentum Introduction to Momentum. What is Momentum? The quantity of motion of a moving body Depends on mass and velocity Measured by multiplying mass.
Would you rather be hit by a tennis ball or a bowling ball?
Momentum and Collisions Unit 6. Momentum- (inertia in motion) Momentum describes an object’s motion Momentum equals an object’s mass times its velocity.
Chapter 10 Collisions.
1 Do Now: What makes the shuttle go UP? Objectives: Utilize IMPULSE to calculate: Force – time – change in velocity Home work: Page 233: #’s 1 – 5 all.
1 AGENDA 13-NOV: PJAS Questions? PJAS Questions? Notes – Unit 4: Momentum (chapter 5) Notes – Unit 4: Momentum (chapter 5) CW – Conservation of Momentum.
Momentum. Introduction to Momentum Momentum can be defined as "mass in motion." All objects have mass; so if an object is moving, then it has momentum.
Conservation of Momentum It’s the Law! Momentum is neither created nor destroyed, only transferred from one object to another OR The total momentum of.
The force on an object may not be constant, but may vary over time. The force can be averaged over the time of application to find the impulse.
CHAPTER 6 Momentum.
Chapter 7 – Momentum Inertia in motion!!! An object in motion will stay in motion until a force acts to stop it. Momentum = mass x velocity (kg * m/s)
Momentum.
Momentum Chapter 9-Glencoe Chapter 7-Cutnell & Johnson.
Can you read through the momentum Powerpoint slides?
Conservation of Momentum. Momentum  The velocity and mass of an object give it momentum.  The larger the velocity and mass, the larger the momentum.
Unit 2 Momentum and Impulse An Introduction to Momentum.
Momentum A measure of how difficult it is to change an object’s motion (to make it stop or swerve). On what does this difficulty depend? –More mass; more.
Chapter 6 Momentum and Collisions 6-1 Momentum and Impulse Momentum(p) describes the tendency of an object to continue moving (or not moving) at a constant.
Chapter 7 Impulse and Momentum. You are stranded in the middle of an ice covered pond. The ice is frictionless. How will you get off?
Chapter 7: Momentum I. Momentum (7.1) A. momentum– “inertia in motion” 1.Mass of an object multiplied by its velocity Momentum = mass x velocity.
Essential Questions Who discovered the Three Laws of Motion? What is Newton’s Second Law & how does it apply to motion?
Chapter 6 and 7. momentum = mass x velocity p = mv units: kgm/s or Ns.
1 Do Now: What makes the shuttle go UP? Objectives: Utilize IMPULSE to calculate: Force – time – change in velocity Home work: Page 233: #’s 1 – 5 all.
MOMENTUM? CHAPTER 7 You might have heard people gaining momentum. What is it and how do you get it??? Momentum Store I’d like some please Sure Thing.
1 Honors Physics Chapter 9 Momentum and Its Conservation.
“The quality of Motion”. Momentum A vector quantity defined as the product of an objects mass and velocity.
PHY 101: Lecture The Impulse-Momentum Theorem 7.2 The Principle of Conservation of Linear Momentum 7.3 Collision in One Dimension 7.4 Collisions.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Momentum and Impulse Chapter 6 Linear Momentum Momentum.
Impulse and Momentum Review … This is what’s on the test.
8 Momentum The law of conservation of momentum states that, in the absence of an external force, the momentum of a system remains unchanged. 8.4 Conservation.
PHY 151: Lecture 9A 9.1 Linear Momentum 9.2 Isolated System (Momentum) 9.3 Nonisolated System (Momentum) 9.4 Collisions in One Dimension.
Momentum.
Unit 5 Momentum Impulse Impulse Changes Momentum Bouncing
Chapter 6 Momentum Impulse Impulse Changes Momentum Bouncing
Conservation of Momentum
Momentum:.
Momentum.
Chapter 6 Momentum Impulse Impulse Changes Momentum Bouncing
Presentation transcript:

Impulse and Momentum and Collisions and Stuff We will now quantify exactly how it hits the fan.

Momentum Momentum = product of mass X velocity Symbol for momentum is “p” (don’t ask me why) – So, p = mv Momentum is also a vector and points in the direction of velocity Units for mass = kg, units for velocity = m/s So, units for momentum = kgm/s – Sadly, there’s no other, more convenient unit for it Plural is ‘momenta’

A closer look at momentum Think of momentum as being how easy/hard it is to get something to stop. Remember, p = mv So if mass or velocity is small, it’s likely that the object has a small momentum, unless the other of the two is very large What would be the momentum of an object at rest?

5 Scenarios Let’s look at the momenta of…. A car at rest Mass = 1000 kg, velocity = 0 m/s P = mv = (1000kg)(0m/s) = 0 kg m/s A bumblebee in flight (low mass, low velocity) Mass = 0.05 kg, velocity = 2 m/s P = mv = (0.05kg)(2m/s) = 0.1 kg m/s Projectile from BB gun (low mass, high velocity) Mass = 0.01 kg, velocity = 150 m/s P = (0.01 kg)(150 m/s) = 1.5 kg m/s

5 Scenarios continued A giant land tortoise (large mass, low velocity) Mass = 300 kg (I looked it up!), velocity = 0.5 m/s P = (300kg)(0.5m/s) = 150 kg m/s Tony Stewart at the Brickyard (large mass, high velocity) – Mass = 1000 kg, velocity = 90 m/s – P = (1000kg)(90 m/s) = 90,000 kg m/s

Understanding momentum Which is easier to stop… A slow moving baseball or a fast moving baseball? A chihuahua racing down the hall towards you or Mr. Barbini racing down the hall towards you? A speeding Volkswagen beetle or a speeding dump truck?

I need a volunteer Rank these momenta from lowest to highest – A fast flying bee – The earth in orbit around the sun – A parked garbage truck – A slowly flying bee – Your grandmother driving down the street in her 1959 Edsel – An oil tanker sailing the seven seas. – Tony Hawk grinding on a rail

Impulse Impulse = Product of Force and how long that force acts. – Impulse = F∆t Impulse is a vector. It acts in the same direction as the force Units of force = Newtons, units of time = seconds. So, units for impulse = NewtonSeconds

Okay, but what does that really mean? Let’s say you have a force of 10 N. You apply this force to a hockey puck on (frictionless) ice for 2 seconds. Impulse = (10N)(2 sec) = 20 Newton seconds Now, let’s say you apply this same force for 4 seconds So the impulse now = 40 Newton seconds

Impulse-momentum theorem Remember the work-energy theorem? This is kind of like that. Impulse = change in momentum In general, the mass of the object(s) in questions stays constant ∆p = p F – p I = mv F – mv I So F∆t = mv F – mv I

Well, Duh… Let’s think about 2 situations: Situation 1: pushing someone in a rolling chair – If you push on them with a certain force for two different times, the longer time will result in a greater change in momentum – So if the chair was at rest to begin with, it will end up going faster at the end for the longer time the force was applied

Less Duh Situation 2: crashing your 1,000 kg car Let’s say you are driving along at 45 m/s (about 96 mph) and you crash into one of two objects: a solid wall or a series of water-filled plastic bins (like they have on the highway) If your car goes from 45 m/s to 0 m/s, you have a change in momentum of: P = mv, so momentum = (1000kg)(45m/s) = 45,000 kgm/s

The car crash continued Recall that impulse = change in momentum, so Ft = mv = 45,000 kgm/s So, Force X time = 45,000 kgm/s Now, would you rather have that force spread out over a long time, or over a short time?

Compare stopping times Change in momentum is 45,000 kgm/s For a stopping time of 5 sec (slamming on your brakes): (F)(5 sec) = 45,000 kgm/s – So F = 9,000 N For a stopping time of 1.5 sec (smashing into the plastic water bins): (F)(1.5 sec) = 45,000 kgm/s – So F = 30,000 N For a stopping time of 0.2 sec (smashing into the concrete wall): (F)(0.2 sec) = 45,000 kgm/s – So F = 225,000 N

Let’s look at those numbers more closely… Remember we have a 1,000 kg car and F = ma If F = 9000N, then accel = 9 m/s (just under acceleration due to gravity) If F = 30,000N, then accel = 30 m/s (just over 3X acceleration due to gravity) If F = 225,000N, then accel = 225 m/s (about 23X the acceleration due to gravity) So, which is the most survivable?

Let’s look at some examples Hitting a baseball (mass = 0.14 kg) Let’s say that a baseball is travelling to the left (negative velocity) at -38m/s. After being hit, it moves to the right at 58 m/s. What is the impulse applied to the ball? If the contact time was 1.6X10 -3 sec, what was the force? Impulse = ∆p = p F – p I = mv F – mv I Impulse = (0.14kg)(58m/s) – (0.14kg)(-38m/s) Impulse = 13.4 kg m/s Impulse = F∆t, so F = impulse/∆t Force = (13.4 kg m/s)/(1.6X10 -3 sec) = 8400 N

Conservation of Momentum In general, momentum is conserved This means that the momentum at the beginning is the same as the momentum at the end I.e. momentum is not created or destroyed Remember, symbol for momentum is ‘p’ So P I = ‘initial momentum’ and P F = ‘final momentum’ Let’s look at some examples

Conservation of Momentum: Example 1 Cannon and cannonball What is momentum before cannon is fired (P I )? Zero So what does final momentum (P F ) have to be if momentum is conserved? Zero

Conservation of Momentum: Example 1 Let’s say that the cannon has a mass of 1000 kg and Cannonball has a mass of 10 kg So total P I = P I of ball + P I of cannon P I of ball = (10kg)(0m/s) = 0 kg m/s P I of cannon = (1000kg)(0m/s) = 0 kg m/s

Conservation of Momentum: Example 1 Now let’s say that the cannonball moves to the right at 75 m/s. How fast does the cannon move to the left to conserve momentum? P I = P F So P F must equal zero

Conservation of Momentum: Example 1 P F must equal zero Total P F = P F of ball + P F of cannon Remember, moving to the right = positive velocity Moving to the left = negative velocity

Conservation of Momentum: Example 1 P F = 0, so (10kg)(75 m/s) + (1000kg)(V cannon ) = 0 So -V cannon = (10kg)(75m/s) / (1000kg) V cannon = m/s If ball moves to the right, cannon moves to the left, so V cannon should be negative, which it is

Conservation of Momentum: Example 2 Newton’s cradle (or “Executive ball clicker” or, more crassly, “Newton’s Balls”) How does it work? If one ball is used, how many come up on the other side? If two are used…?

Now, Dr. Mason, remind us again when conservation of momentum holds… Momentum is conserved when there are NO EXTERNAL FORCES ACTING ON THE SYSTEM. If any net external force acts, momentum will NOT be conserved. Let’s look at a contrived example involving pool balls.

Billiards Imagine the scenario where one pool ball is stationary on a pool table. A second pool ball smacks into it. – The ‘system’ is the two pool balls. – Are there any net external forces? Now, imagine that just before they hit, a hole opens up underneath them. – The ‘system’ is the two pool balls. – Now are there any net external forces? Okay, this time, no sudden trapdoor. Same two pool balls collide. – The ‘system’ this time is just one pool ball. – Now are there any net external forces?

Freight trains example A freight train is being assembled out of two boxcars. Car 1 has a mass of 65,000 kg and is moving to the right at V 01 = 0.8m/s. Car 2 has a mass of 92,000 kg and is also moving to the right at V 02 = 1.3 m/s. Car 2 collides with car 1 and couples with it. What is the speed of the train after the coupling? Momentum is conserved. (m 1 + m 2 )V f = m 1 V 01 + m 2 V 02 V f = 1.1 m/s

Ballistic Pendulum A ballistic pendulum is a device that is used to determine the muzzle velocity of a gun.

Collisions in 2-D Conservation of momentum holds in 2 dimensions as well As one may expect, you can treat the X- and Y- components independently – So, P f = P i – And P fX = P iX – And P fY = P iY