Data and Computer Communications Eighth Edition by William Stallings Lecture slides by Lawrie Brown Chapter 5 – Signal Encoding Techniques.

Slides:



Advertisements
Similar presentations
Data Communications and Networking
Advertisements

Signal Encoding Techniques
Signal Encoding Techniques
1 Pertemuan 07 Teknik Modulasi Matakuliah: H0174/Jaringan Komputer Tahun: 2006 Versi: 1/0.
Data and Computer Communications Eighth Edition by William Stallings Lecture slides by Lawrie Brown Chapter 5 – Signal Encoding Techniques.
Analogue to Digital Conversion (PCM and DM)
Data and Computer Communications
Data and Computer Communications Chapter 5 – Signal Encoding Techniques.
1 Data Encoding – Chapter 5 (part 1) CSE 3213 Fall /2/2015 9:13 AM.
Chapter 5 – Signal Encoding and Modulation Techniques
Signal Encoding Techniques
Stallings, Wireless Communications & Networks, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Signal Encoding Techniques.
Physical Layer – Part 2 Data Encoding Techniques
1 Digital Data, Analog Signals (5.2) CSE 3213 Fall May 2015.
EE 4272Spring, 2003 Chapter 5 Data Encoding Data Transmission Digital data, digital signal Analog data, digital signal: e.g., voice, and video are often.
Data and Computer Communications
S IGNAL E NCODING T ECHNIQUES Engr. Mehran Mamonai Department of Telecommunication.
4.2 Digital Transmission Pulse Modulation (Part 2.1)
William Stallings Data and Computer Communications 7th Edition
Networks: Data Encoding1 Data Encoding Techniques.
Data Encoding Techniques
Signal Encoding Lesson 05 NETS2150/2850
3. Encoding Techniques and Spread Spectrum
331: STUDY DATA COMMUNICATIONS AND NETWORKS.  1. Discuss computer networks (5 hrs)  2. Discuss data communications (15 hrs)
Sami Al-Wakeel 1 Data Transmission and Computer Networks Data Encoding.
LECTURE 5 CT1303 LAN. DATA ENCODING Digital signal: is a sequence of discrete, discontinuous voltage pulses. Each pulse is a signal element Binary data.
Digital to analogue conversion. 1 DIGITAL-TO-ANALOG CONVERSION Digital-to-analog conversion is the process of changing one of the characteristics (A,
DIGITAL-TO-DIGITAL CONVERSION
COSC 3213 – Computer Networks I Summer 2003 Topics: 1. Line Coding (Digital Data, Digital Signals) 2. Digital Modulation (Digital Data, Analog Signals)
Aegis School of Telecommunication Telecom Systems I by Dr. M. G. Sharma, Phd. IIT Kharagpur Microwaves and Antennas.
Data and Computer Communications
Chapter 6. Signal Encoding Techniques
CE 4228 Data Communications and Networking
Signal Encoding Techniques
Data and Computer Communications
FIT 1005 Networks & Data Communications
Data Communications Chapter 5 Data Encoding.
Signal Encoding Techniques Chapter 6. Reasons for Choosing Encoding Techniques  Digital data, digital signal Equipment less complex and expensive than.
10/6/2015 3:12 AM1 Data Encoding ─ Analog Data, Digital Signals (5.3) CSE 3213 Fall 2011.
© Janice Regan, CMPT 128, CMPT 371 Data Communications and Networking Digital Encoding.
Wireless Networks Instructor: Fatima Naseem Lecture # 03 Computer Engineering Department, University of Engineering and Technology, Taxila.
Signal Encoding Techniques. Lecture Learning Outcomes Be able to understand, appreciate and differentiate the different signal encoding criteria available.
3-2008UP-Copyrights reserved1 ITGD4103 Data Communications and Networks Lecture-11:Data encoding techniques week 12- q-2/ 2008 Dr. Anwar Mousa University.
EEC4113 Data Communication & Multimedia System Chapter 2: Baseband Encoding by Muhazam Mustapha, July 2010.
Signal Encoding Techniques Chapter 6. Reasons for Choosing Encoding Techniques Digital data, digital signal Equipment less complex and expensive than.
Prof. Hosny Ibrahim Lecture 5. Data Communication IT 221 By: Prof. Hosny M. Ibrahim 2.
Physical Layer (I) Data Encoding Techniques Advanced Computer Networks.
Digital Line Encoding Converting standard logic level to a form more suitable to telephone line transmission. Six factors must be considered when selecting.
Signal Encoding Techniques Ir. Hary Nugroho MT.. Data Transmission.
Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education,
Signal Encoding Techniques. Digital Data, Digital Signal  Digital signal discrete, discontinuous voltage pulses discrete, discontinuous voltage pulses.
CSE 320 Data Communications
Chap 6 Signal Encoding Technique
Data and Computer Communications by William Stallings Eighth Edition
Data Encoding Data Encoding refers the various techniques of impressing data (0,1) or information on an electrical, electromagnetic or optical signal that.
Signal Encoding Techniques
CSE 5345 – Fundamentals of Wireless Networks
Digital modulation techniques
Physical Layer (Part 2) Data Encoding Techniques
Chapter 4 Digital Transmission
Data Encoding Data Encoding refers the various techniques of impressing data (0,1) or information on an electrical, electromagnetic or optical signal that.
Physical Layer – Part 2 Data Encoding Techniques
Lecture 6: Signal Encoding Techniques
CSE 5345 – Fundamentals of Wireless Networks
Signal Encoding Techniques
EEC4113 Data Communication & Multimedia System Chapter 3: Broadband Encoding by Muhazam Mustapha, October 2011.
Chapter 5. Data Encoding Digital Data, Digital Signals
3. Encoding Techniques and Spread Spectrum
Physical Layer – Part 2 Data Encoding Techniques
EEC4113 Data Communication & Multimedia System Chapter 2: Baseband Encoding by Muhazam Mustapha, September 2012.
Presentation transcript:

Data and Computer Communications Eighth Edition by William Stallings Lecture slides by Lawrie Brown Chapter 5 – Signal Encoding Techniques

Signal Encoding Techniques Even the natives have difficulty mastering this peculiar vocabulary —The Golden Bough, Sir James George Frazer

Signal Encoding Techniques

Digital Data, Digital Signal  Digital signal discrete, discontinuous voltage pulses discrete, discontinuous voltage pulses each pulse is a signal element each pulse is a signal element binary data encoded into signal elements binary data encoded into signal elements

Some Terms  unipolar  polar  data rate  duration or length of a bit  modulation rate  mark and space

Interpreting Signals  need to know timing of bits - when they start and end timing of bits - when they start and end signal levels signal levels  factors affecting signal interpretation signal to noise ratio signal to noise ratio data rate data rate bandwidth bandwidth encoding scheme encoding scheme

Comparison of Encoding Schemes  signal spectrum  clocking  error detection  signal interference and noise immunity  cost and complexity

Encoding Schemes

Nonreturn to Zero-Level (NRZ-L)  two different voltages for 0 and 1 bits  voltage constant during bit interval no transition I.e. no return to zero voltage no transition I.e. no return to zero voltage such as absence of voltage for zero, constant positive voltage for one such as absence of voltage for zero, constant positive voltage for one more often, negative voltage for one value and positive for the other more often, negative voltage for one value and positive for the other

Nonreturn to Zero Inverted  nonreturn to zero inverted on ones  constant voltage pulse for duration of bit  data encoded as presence or absence of signal transition at beginning of bit time transition (low to high or high to low) denotes binary 1 transition (low to high or high to low) denotes binary 1 no transition denotes binary 0 no transition denotes binary 0  example of differential encoding since have data represented by changes rather than levels data represented by changes rather than levels more reliable detection of transition rather than level more reliable detection of transition rather than level easy to lose sense of polarity easy to lose sense of polarity

NRZ Pros & Cons  Pros easy to engineer easy to engineer make good use of bandwidth make good use of bandwidth  Cons dc component dc component lack of synchronization capability lack of synchronization capability  used for magnetic recording  not often used for signal transmission

Multilevel Binary Bipolar-AMI  Use more than two levels  Bipolar-AMI zero represented by no line signal zero represented by no line signal one represented by positive or negative pulse one represented by positive or negative pulse one pulses alternate in polarity one pulses alternate in polarity no loss of sync if a long string of ones no loss of sync if a long string of ones long runs of zeros still a problem long runs of zeros still a problem no net dc component no net dc component lower bandwidth lower bandwidth easy error detection easy error detection

Multilevel Binary Pseudoternary  one represented by absence of line signal  zero represented by alternating positive and negative  no advantage or disadvantage over bipolar-AMI  each used in some applications

Multilevel Binary Issues  synchronization with long runs of 0’s or 1’s can insert additional bits, cf ISDN can insert additional bits, cf ISDN scramble data (later) scramble data (later)  not as efficient as NRZ each signal element only represents one bit each signal element only represents one bit receiver distinguishes between three levels: +A, -A, 0receiver distinguishes between three levels: +A, -A, 0 a 3 level system could represent log 2 3 = 1.58 bits a 3 level system could represent log 2 3 = 1.58 bits requires approx. 3dB more signal power for same probability of bit error requires approx. 3dB more signal power for same probability of bit error

Manchester Encoding  has transition in middle of each bit period  transition serves as clock and data  low to high represents one  high to low represents zero  used by IEEE 802.

Differential Manchester Encoding  midbit transition is clocking only  transition at start of bit period representing 0  no transition at start of bit period representing 1 this is a differential encoding scheme this is a differential encoding scheme  used by IEEE 802.5

Biphase Pros and Cons  Con at least one transition per bit time and possibly two at least one transition per bit time and possibly two maximum modulation rate is twice NRZ maximum modulation rate is twice NRZ requires more bandwidth requires more bandwidth  Pros synchronization on mid bit transition (self clocking) synchronization on mid bit transition (self clocking) has no dc component has no dc component has error detection has error detection

Modulation Rate

Scrambling  use scrambling to replace sequences that would produce constant voltage  these filling sequences must produce enough transitions to sync produce enough transitions to sync be recognized by receiver & replaced with original be recognized by receiver & replaced with original be same length as original be same length as original  design goals have no dc component have no dc component have no long sequences of zero level line signal have no long sequences of zero level line signal have no reduction in data rate have no reduction in data rate give error detection capability give error detection capability

B8ZS and HDB3

Digital Data, Analog Signal  main use is public telephone system has freq range of 300Hz to 3400Hz has freq range of 300Hz to 3400Hz use modem (modulator-demodulator) use modem (modulator-demodulator)  encoding techniques Amplitude shift keying (ASK) Amplitude shift keying (ASK) Frequency shift keying (FSK) Frequency shift keying (FSK) Phase shift keying (PK) Phase shift keying (PK)

Modulation Techniques

Amplitude Shift Keying  encode 0/1 by different carrier amplitudes usually have one amplitude zero usually have one amplitude zero  susceptible to sudden gain changes  inefficient  used for up to 1200bps on voice grade lines up to 1200bps on voice grade lines very high speeds over optical fiber very high speeds over optical fiber

Binary Frequency Shift Keying  most common is binary FSK (BFSK)  two binary values represented by two different frequencies (near carrier)  less susceptible to error than ASK  used for up to 1200bps on voice grade lines up to 1200bps on voice grade lines high frequency radio high frequency radio even higher frequency on LANs using co-ax even higher frequency on LANs using co-ax

Multiple FSK  each signalling element represents more than one bit  more than two frequencies used  more bandwidth efficient  more prone to error

Phase Shift Keying  phase of carrier signal is shifted to represent data  binary PSK two phases represent two binary digits two phases represent two binary digits  differential PSK phase shifted relative to previous transmission rather than some reference signal phase shifted relative to previous transmission rather than some reference signal

Quadrature PSK  get more efficient use if each signal element represents more than one bit eg. shifts of  /2 (90 o ) eg. shifts of  /2 (90 o ) each element represents two bits each element represents two bits split input data stream in two & modulate onto carrier & phase shifted carrier split input data stream in two & modulate onto carrier & phase shifted carrier  can use 8 phase angles & more than one amplitude 9600bps modem uses 12 angles, four of which have two amplitudes 9600bps modem uses 12 angles, four of which have two amplitudes

QPSK and OQPSK Modulators

Performance of Digital to Analog Modulation Schemes  bandwidth ASK/PSK bandwidth directly relates to bit rate ASK/PSK bandwidth directly relates to bit rate multilevel PSK gives significant improvements multilevel PSK gives significant improvements  in presence of noise: bit error rate of PSK and QPSK are about 3dB superior to ASK and FSK bit error rate of PSK and QPSK are about 3dB superior to ASK and FSK for MFSK & MPSK have tradeoff between bandwidth efficiency and error performance for MFSK & MPSK have tradeoff between bandwidth efficiency and error performance

Quadrature Amplitude Modulation  QAM used on asymmetric digital subscriber line (ADSL) and some wireless  combination of ASK and PSK  logical extension of QPSK  send two different signals simultaneously on same carrier frequency use two copies of carrier, one shifted 90 ° use two copies of carrier, one shifted 90 ° each carrier is ASK modulated each carrier is ASK modulated two independent signals over same medium two independent signals over same medium demodulate and combine for original binary output demodulate and combine for original binary output

QAM Modulator

QAM Variants  two level ASK each of two streams in one of two states each of two streams in one of two states four state system four state system essentially QPSK essentially QPSK  four level ASK combined stream in one of 16 states combined stream in one of 16 states  have 64 and 256 state systems  improved data rate for given bandwidth but increased potential error rate but increased potential error rate

Analog Data, Digital Signal  digitization is conversion of analog data into digital data which can then: be transmitted using NRZ-L be transmitted using NRZ-L be transmitted using code other than NRZ-L be transmitted using code other than NRZ-L be converted to analog signal be converted to analog signal  analog to digital conversion done using a codec pulse code modulation pulse code modulation delta modulation delta modulation

Digitizing Analog Data

Pulse Code Modulation (PCM)  sampling theorem: “If a signal is sampled at regular intervals at a rate higher than twice the highest signal frequency, the samples contain all information in original signal” “If a signal is sampled at regular intervals at a rate higher than twice the highest signal frequency, the samples contain all information in original signal” eg. 4000Hz voice data, requires 8000 sample per sec eg. 4000Hz voice data, requires 8000 sample per sec  strictly have analog samples Pulse Amplitude Modulation (PAM) Pulse Amplitude Modulation (PAM)  so assign each a digital value

PCM Example

PCM Block Diagram

Non-Linear Coding

Companding

Delta Modulation  analog input is approximated by a staircase function can move up or down one level (  ) at each sample interval can move up or down one level (  ) at each sample interval  has binary behavior since function only moves up or down at each sample interval since function only moves up or down at each sample interval hence can encode each sample as single bit hence can encode each sample as single bit 1 for up or 0 for down 1 for up or 0 for down

Delta Modulation Example

Delta Modulation Operation

PCM verses Delta Modulation  DM has simplicity compared to PCM  but has worse SNR  issue of bandwidth used eg. for good voice reproduction with PCM eg. for good voice reproduction with PCM want 128 levels (7 bit) & voice bandwidth 4khzwant 128 levels (7 bit) & voice bandwidth 4khz need 8000 x 7 = 56kbpsneed 8000 x 7 = 56kbps  data compression can improve on this  still growing demand for digital signals use of repeaters, TDM, efficient switching use of repeaters, TDM, efficient switching  PCM preferred to DM for analog signals

Analog Data, Analog Signals  modulate carrier frequency with analog data  why modulate analog signals? higher frequency can give more efficient transmission higher frequency can give more efficient transmission permits frequency division multiplexing (chapter 8) permits frequency division multiplexing (chapter 8)  types of modulation Amplitude Amplitude Frequency Frequency Phase Phase

Analog Modulation Techniques  Amplitude Modulation  Frequency Modulation  Phase Modulation

Summary  looked at signal encoding techniques digital data, digital signal digital data, digital signal analog data, digital signal analog data, digital signal digital data, analog signal digital data, analog signal analog data, analog signal analog data, analog signal