CS555Topic 241 Cryptography CS 555 Topic 24: Secure Function Evaluation.

Slides:



Advertisements
Similar presentations
Polylogarithmic Private Approximations and Efficient Matching
Advertisements

Efficient Private Approximation Protocols Piotr Indyk David Woodruff Work in progress.
Revisiting the efficiency of malicious two party computation David Woodruff MIT.
Efficiency vs. Assumptions in Secure Computation Yuval Ishai Technion & UCLA.
Secure Evaluation of Multivariate Polynomials
Secure Multiparty Computations on Bitcoin
Oblivious Branching Program Evaluation
Spring 2000CS 4611 Security Outline Encryption Algorithms Authentication Protocols Message Integrity Protocols Key Distribution Firewalls.
Lecturer: Moni Naor Foundations of Cryptography Lecture 15: Oblivious Transfer and Secure Function Evaluation.
Efficient Two-party and Multiparty Computation against Covert Adversaries Vipul Goyal Payman Mohassel Adam Smith Penn Sate UCLAUC Davis.
ITIS 6200/ Secure multiparty computation – Alice has x, Bob has y, we want to calculate f(x, y) without disclosing the values – We can only do.
Semi-Honest to Malicious Oblivious-Transfer The Black-box Way Iftach Haitner Weizmann Institute of Science.
Rational Oblivious Transfer KARTIK NAYAK, XIONG FAN.
CS555Topic 191 Cryptography CS 555 Topic 19: Formalization of Public Key Encrpytion.
Amortizing Garbled Circuits Yan Huang, Jonathan Katz, Alex Malozemoff (UMD) Vlad Kolesnikov (Bell Labs) Ranjit Kumaresan (Technion) Cut-and-Choose Yao-Based.
Introduction to Modern Cryptography, Lecture 12 Secure Multi-Party Computation.
General Cryptographic Protocols (aka secure multi-party computation) Oded Goldreich Weizmann Institute of Science.
Yan Huang, Jonathan Katz, David Evans University of Maryland, University of Virginia Efficient Secure Two-Party Computation Using Symmetric Cut-and-Choose.
Oblivious Transfer based on the McEliece Assumptions
ECOMMERCE TECHNOLOGY FALL 2003 COPYRIGHT © 2003 MICHAEL I. SHAMOS Cryptography.
Co-operative Private Equality Test(CPET) Ronghua Li and Chuan-Kun Wu (received June 21, 2005; revised and accepted July 4, 2005) International Journal.
How to Share a Secret Amos Beimel. Secret Sharing [Shamir79,Blakley79,ItoSaitoNishizeki87] ? bad.
Private Analysis of Data Sets Benny Pinkas HP Labs, Princeton.
1 Introduction to Secure Computation Benny Pinkas HP Labs, Princeton.
Tutorial on Secure Multi-Party Computation
Chapter 9 Cryptographic Protocol Cryptography-Principles and Practice Harbin Institute of Technology School of Computer Science and Technology Zhijun Li.
Privacy Preserving Learning of Decision Trees Benny Pinkas HP Labs Joint work with Yehuda Lindell (done while at the Weizmann Institute)
Blind Vision Shai Avidan, Moshe Butman Yuval Schwartz.
Slide 1 Vitaly Shmatikov CS 380S Oblivious Transfer and Secure Multi-Party Computation With Malicious Parties.
1 Cross-Domain Secure Computation Chongwon Cho (HRL Laboratories) Sanjam Garg (IBM T.J. Watson) Rafail Ostrovsky (UCLA)
How to play ANY mental game
CS573 Data Privacy and Security
Efficient and Robust Private Set Intersection and multiparty multivariate polynomials Dana Dachman-Soled 1, Tal Malkin 1, Mariana Raykova 1, Moti Yung.
Overview of Privacy Preserving Techniques.  This is a high-level summary of the state-of-the-art privacy preserving techniques and research areas  Focus.
Secure Computation of the k’th Ranked Element Gagan Aggarwal Stanford University Joint work with Nina Mishra and Benny Pinkas, HP Labs.
A Few Simple Applications to Cryptography Louis Salvail BRICS, Aarhus University.
Topic 22: Digital Schemes (2)
On the Practical Feasibility of Secure Distributed Computing A Case Study Gregory Neven, Frank Piessens, Bart De Decker Dept. of Computer Science, K.U.Leuven.
Slide 1 Vitaly Shmatikov CS 380S Introduction to Secure Multi-Party Computation.
13. Oktober 2010 | Dr.Marc Fischlin | Kryptosicherheit | 1 Rate-Limited Secure Function Evaluation 21. Public Key Cryptography, March 1 st, 2013 Özgür.
Slide 1 Vitaly Shmatikov CS 380S Yao’s Protocol. slide Yao’s Protocol uCompute any function securely … in the semi-honest model uFirst, convert.
Secure two-party computation: a visual way by Paolo D’Arco and Roberto De Prisco.
Slide 1 Yao’s Protocol. slide Yao’s Protocol uCompute any function securely … in the semi-honest model uFirst, convert the function into a boolean.
Introduction to Modern Cryptography Sharif University Spring 2015 Data and Network Security Lab Sharif University of Technology Department of Computer.
Public Key Encryption with keyword Search Author: Dan Boneh Rafail Ostroversity Giovanni Di Crescenzo Giuseppe Persiano Presenter: 陳昱圻.
On the Communication Complexity of SFE with Long Output Daniel Wichs (Northeastern) joint work with Pavel Hubáček.
CS555Topic 251 Cryptography CS 555 Topic 25: Quantum Crpytography.
1 Information Security – Theory vs. Reality , Winter Lecture 10: Garbled circuits and obfuscation Eran Tromer Slides credit: Boaz.
15-499Page :Algorithms and Applications Cryptography I – Introduction – Terminology – Some primitives – Some protocols.
Non-Interactive Verifiable Computing August 5, 2009 Bryan Parno Carnegie Mellon University Rosario Gennaro, Craig Gentry IBM Research.
Secure Computation (Lecture 2) Arpita Patra. Vishwaroop of MPC.
On the Cryptographic Complexity of the Worst Functions Amos Beimel (BGU) Yuval Ishai (Technion) Ranjit Kumaresan (Technion) Eyal Kushilevitz (Technion)
Secure Computation Lecture Arpita Patra. Recap >> Improving the complexity of GMW > Step I: Offline: O(n 2 c AND ) OTs; Online: i.t., no crypto.
Slide 1 Many thanks to Vitaly Shmatikov of the University of Texas, Austin for providing these slides. Introduction to Secure Multi-Party Computation.
Secure Computation Lecture Arpita Patra. Recap > Shamir Secret-sharing > BGW Protocol based on secret-sharing > Offline/Online phase > Creating.
Andrew Lindell Aladdin Knowledge Systems and Bar-Ilan University 04/08/08 CRYP-106 Efficient Fully-Simulatable Oblivious Transfer.
Efficient Private Matching and Set Intersection Mike Freedman, NYU Kobbi Nissim, MSR Benny Pinkas, HP Labs EUROCRYPT 2004.
Efficient Oblivious Transfer with Stateless Secure Tokens Alcatel-Lucent Bell Labs Vlad Kolesnikov.
Verifiable Threshold Secret Sharing and Full Fair Secure Two-party Computation YE Jian-wei March 7, 2009.
Cryptographic methods. Outline  Preliminary Assumptions Public-key encryption  Oblivious Transfer (OT)  Random share based methods  Homomorphic Encryption.
Secure Computation Basics Yan Huang Indiana University May 9, 2016.
Multi-Party Computation r n parties: P 1,…,P n  P i has input s i  Parties want to compute f(s 1,…,s n ) together  P i doesn’t want any information.
Topic 36: Zero-Knowledge Proofs
Secret Sharing (or, more accurately, “Secret Splitting”)
The first Few Slides stolen from Boaz Barak
Course Business I am traveling April 25-May 3rd
Cryptography CS 555 Lecture 22
Cryptography CS 555 Digital Signatures Continued
A Light-weight Oblivious Transfer Protocol Based on Channel Noise
Presentation transcript:

CS555Topic 241 Cryptography CS 555 Topic 24: Secure Function Evaluation

CS555Topic 242 Outline and Readings Outline: –1-out-2 Oblivious Transfer –Private Information Retrieval –Yao’s Scrambled Circuits for 2- party SFE –Secret Sharing –n-party SFE Readings:

CS555Topic 243 Oblivious Transfer 1 out of 2 OT –Alice has two messages x 0 and x 1 –At the end of the protocol Bob gets exactly one of x 0 and x 1 Alice does not know which one Bob gets 1 out of n OT –Alice has n messages –Bob gets exactly one message, Alice does not know which one Bob gets –1 out of 2 OT implies 1 out of n OT

CS555Topic 244 Bellare-Micali 1-out-2-OT protocol c z 0, z 1 C 0 =[g r0, H(z 0 r0 )  x 0 ], C 1 =[g r1, H(z 1 r1 )  x 1 ] x 0, x 1 b  {0,1} k  R Z q z b =g k z 1-b =c/g k decrypts C b =[v 1,v 2 ] by computing H(v 1 k )  v 2 c  R G q g: generator of G q, a group of order q B gets only one of {x 0,x 1 }, w/o A knowing which one it is.

Private Information Retrieval (PIR) A Private Information Retrieval (PIR) protocol enables client B to retrieve one entry from a database maintained by server A without A knowing which entry it is –Achieves 1-out-of-n Oblivious Transfer with communication cost sub-linear in n May relaxes the requirement that B retrieves only one entry in the OT requirement –Naïve protocol is for A to send everything to B. –Want to design protocol with sub-linear communication cost. –Sub-linear computation cost for the server (A) impossible A must scans through the whole database, otherwise A learns sth about what has been accessed. With multiple non-colluding servers, sub-linear computation is possible CS555Topic 245

PIR Protocol due to Kushilevits and Ostrovsky See the slides by Stefan Dziembowski Stefan Dziembowski CS555Topic 246

CS555Topic 247 Secure Function Evaluation Also known as Secure Multiparty Computation 2-party SFE: Alice has x, Bob has y, and they want to compute two functions f A (x,y), f B (x,y). At the end of the protocol –Alice learns f A (x,y) and nothing else –Bob learns f B (x,y) and nothing else n-party SFE: n parties each have a private input, and they join compute functions

8 Adversary Models There are two major adversary models for secure computation: Semi-honest model and fully malicious model. –Semi-honest model: all parties follow the protocol; but dishonest parties may be curious to violate others’ privacy. –Fully malicious model: dishonest parties can deviate from the protocol and behave arbitrarily. Clearly, fully malicious model is harder to deal with. CS555Topic 24

9 Security in Semi-Honest Model A 2-party protocol between A and B (for computing a deterministic function f()) is secure in the semi-honest model if there exists an efficient algorithm MA (resp., MB) such that –the view of A (resp., B) is computationally indistinguishable from MA(x1,f1(x1,x2)) (resp., MB(x2,f2(x1,x2)). We can have a similar (but more complex) definition for multiple parties. CS555Topic 24

10 Security in Malicious Model (1) In the malicious model, security is much more complex to define. For example, there are unavoidable attacks: –What if a malicious party replaces his private input at the very beginning? –What if a malicious party aborts in the middle of execution? –What if a malicious party aborts at the very beginning? CS555Topic 24

11 Security in Malicious Model (2) To deal with these complications, we use an approach of ideal world vs. real world. –Consider an ideal world in which all parties (including the malicious ones) give their private inputs to a trusted authority. –After receiving all private inputs, the authority computes the output and sends it to all parties. –Clearly, those unavoidable attacks also exist in this ideal world. CS555Topic 24

12 Security in Malicious Model (3) We require that, for any adversary in the real world, there is an “equivalent” adversary in the ideal world, such that –The outputs in the real world are computationally indistinguishable from those in the ideal world. In this way, we capture the idea that –All “avoidable” attacks are prevented. –“Unavoidable” attacks are allowed. CS555Topic 24

13 Yao’s Theorem The first completeness theorem for secure computation. It states that for ANY efficiently computable function, there is a secure two-party protocol in the semi-honest model. –Therefore, in theory there is no need to design protocols for specific functions. –Surprising! CS555Topic 24

CS555Topic 2414 Yao’s Scrambled Circuit Protocol for 2-party SFE For simplicity, assume that Alice has x, Bob has y, Alice learns f(x,y), and Bob learns nothing –represent f(x,y) using a boolean circuit –Alice encrypts the circuit and sends it to Bob in the circuit each wire is associated with two random values –Alice sends the values corresponding to her input bits –Bob uses OT to obtain values for his bits –Bob evaluates the circuits and send the result to Alice

15 Circuit Computation The design of Yao’s protocol is based on circuit computation. –Any (efficiently) computable function can be represented as a family of (polynomial-size) boolean circuits. –Such a circuit consists of and, or, and not gates. CS555Topic 24

16 Garbled Circuit We can represent Alice’s circuit with a garbled circuit so that evaluating it does not leak information about intermediate results. –For each edge in the circuit, we use two random keys to represent 0 and 1 respectively. –We represent each gate with 4 ciphertexts, for input (0,0), (0,1), (1,0), (1,1), respectively. These ciphertexts should be permuted randomly. –The ciphertext for input (a,b) is the key representing the output Gate(a,b) encrypted by the keys representing a and b. CS555Topic 24

17 Example of a Gate This gate is represented by: (a random permutation of) E KA (E KC (KE)); E KB (E KC (KE)); E KA (E KD (KE)); E KB (E KD (KF)). And 0: KE 1: KF 0: KA 1: KB 0: KC 1: KD CS555Topic 24

18 Evaluation of Garbed Circuit Given the keys representing the inputs of a gate, we can easily obtain the key representing the output of the gate. –Only need to decrypt the corresponding entry. –But we do not know which entry it is? We can decrypt all entries. Suppose each cleartext contains some redundancy (like a hash value). Then only decryption of the right entry can yield such redundancy. CS555Topic 24

19 Translating Input? So, we know that, given the keys representing Bob’s private input, we can evaluate the garbled circuit. –Alice sends the garbled circuit, and the keys corresponding to her input. –Then Bob can evaluate the garbled circuit if he knows how to translate his input to the keys. But Alice can’t give the translation table to Bob. –Otherwise, Bob can learn information during evaluation. CS555Topic 24

20 Jump Start with Oblivious Transfer A solution to this problem is 1-out-of-2 OT for each input bit. –Alice sends the keys representing 0 and 1; –Bob chooses to receive the key representing his input at this bit. –Clearly, Bob can’t evaluate the circuit at any other input. CS555Topic 24

21 Finishing the Evaluation At the end of evaluation, Bob gets the keys representing the output bits of circuit. –Alice sends Bob a table of the keys for each output bit. –Bob translates the keys back to the output bits. CS555Topic 24

CS555Topic 2422 Secret Sharing t-out-of-n secret sharing –divides a secret s into n pieces so that any t pieces together can recover n How to do n-out-of-n secret sharing? Shamir’s secret sharing scheme –secret s  Z p –pick a random degree t-1 polynomial f  F p [x] s.t. f(0)=s –user i gets s i =f(i) –t users can interpolate f and find out b –t-1 shares reveal no information about s

CS555Topic 2423 Proactive Secret Sharing Suppose that s is shared in t-out-of-n User i has s i =f(i) Proactive updates: –user 1 picks random degree t-1 polynomial s.t. g(t)=0 –user 1 sends y j =g(j) to user j –user j does s j new =s j old +y j

CS555Topic 2424 BGW n-party SFE Use algorithmic circuits where operations are + and  –All computable functions can be represented as an algorithmic circuit Each private input is shared among all participants Do computation with the shared value –e.g., given x and y both are shared by n parties, compute the shares of x+y and x  y Secure when the majority of the parties are honest

25 From Semi-Honest to Malicious Based on general-purpose protocols in the semi- honest model, we can construct general-purpose protocols in the malicious model. –The main tools are bit commitment, (verifiable) secret sharing, and zero-knowledge proofs. –In fact, “compilers” are available to automatically translating protocols. CS555Topic 24

CS555Topic 2426 Coming Attractions … Topics –Identity based encryption & quantum cryptography