Approximation Algorithms for Capacitated Set Cover Ravishankar Krishnaswamy (joint work with Nikhil Bansal and Barna Saha)

Slides:



Advertisements
Similar presentations
Minimum Clique Partition Problem with Constrained Weight for Interval Graphs Jianping Li Department of Mathematics Yunnan University Jointed by M.X. Chen.
Advertisements

 Review: The Greedy Method
Chapter 3 Workforce scheduling.
Approximation Algorithms Chapter 14: Rounding Applied to Set Cover.
1 EE5900 Advanced Embedded System For Smart Infrastructure Static Scheduling.
Centrality of Trees for Capacitated k-Center Hyung-Chan An École Polytechnique Fédérale de Lausanne July 29, 2013 Joint work with Aditya Bhaskara & Ola.
Primal-Dual Algorithms for Connected Facility Location Chaitanya SwamyAmit Kumar Cornell University.
Multicut Lower Bounds via Network Coding Anna Blasiak Cornell University.
N. Bansal 1, M. Charikar 2, R. Krishnaswamy 2, S. Li 3 1 TU Eindhoven 2 Princeton University 3 TTIC Midwest Theory Day, Purdue, May 3, 2014.
Scheduling with Outliers Ravishankar Krishnaswamy (Carnegie Mellon University) Joint work with Anupam Gupta, Amit Kumar and Danny Segev.
1 Better Scalable Algorithms for Broadcast Scheduling Ravishankar Krishnaswamy Carnegie Mellon University Joint work with Nikhil Bansal and Viswanath Nagarajan.
1 Online and Stochastic Survivable Network Design Ravishankar Krishnaswamy Carnegie Mellon University joint work with Anupam Gupta and R. Ravi.
The number of edge-disjoint transitive triples in a tournament.
Max-Min Fair Allocation of Indivisible Goods Amin Saberi Stanford University Joint work with Arash Asadpour TexPoint fonts used in EMF. Read the TexPoint.
Instructor Neelima Gupta Table of Contents Lp –rounding Dual Fitting LP-Duality.
Totally Unimodular Matrices Lecture 11: Feb 23 Simplex Algorithm Elliposid Algorithm.
1 Approximation Algorithms for Demand- Robust and Stochastic Min-Cut Problems Vineet Goyal Carnegie Mellon University Based on, [Golovin, G, Ravi] (STACS’06)
Approximation Algorithm: Iterative Rounding Lecture 15: March 9.
Implicit Hitting Set Problems Richard M. Karp Harvard University August 29, 2011.
AT&T Labs1 The Sensor Cover Problem Alon Efrat (U. Arizona) Adam Buchsbaum (AT&T Labs) Shaili Jain (Harvard) Suresh Venkatasubramanian (AT&T Labs) Ke Yi.
Approximation Algorithms
[1][1][1][1] Lecture 5-7: Cell Planning of Cellular Networks June 22 + July 6, Introduction to Algorithmic Wireless Communications David Amzallag.
Computer Algorithms Integer Programming ECE 665 Professor Maciej Ciesielski By DFG.
An Approximation Algorithm for Requirement cut on graphs Viswanath Nagarajan Joint work with R. Ravi.
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract.
Integer Programming Difference from linear programming –Variables x i must take on integral values, not real values Lots of interesting problems can be.
Facility Location with Nonuniform Hard Capacities Tom Wexler Martin Pál Éva Tardos Cornell University ( A 9-Approximation)
Primal-Dual Algorithms for Connected Facility Location Chaitanya SwamyAmit Kumar Cornell University.
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract.
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract.
Linear Programming – Max Flow – Min Cut Orgad Keller.
1 Introduction to Approximation Algorithms Lecture 15: Mar 5.
A General Approach to Online Network Optimization Problems Seffi Naor Computer Science Dept. Technion Haifa, Israel Joint work: Noga Alon, Yossi Azar,
Packing Element-Disjoint Steiner Trees Mohammad R. Salavatipour Department of Computing Science University of Alberta Joint with Joseph Cheriyan Department.
Outline Introduction The hardness result The approximation algorithm.
1/24 Algorithms for Generalized Caching Nikhil Bansal IBM Research Niv Buchbinder Open Univ. Israel Seffi Naor Technion.
1 Lecture 4 Maximal Flow Problems Set Covering Problems.
1 The Santa Claus Problem (Maximizing the minimum load on unrelated machines) Nikhil Bansal (IBM) Maxim Sviridenko (IBM)
Approximation Algorithms for Stochastic Combinatorial Optimization Part I: Multistage problems Anupam Gupta Carnegie Mellon University.
Weighted Geometric Set Multicover via Quasi-uniform Sampling (ESA 2012) Kirk Pruhs (U. Pittsburgh) Coauthor: Nikhil Bansal (TU Eindhoven)
1 Introduction to Approximation Algorithms. 2 NP-completeness Do your best then.
Primal-Dual Algorithms for Connected Facility Location Chaitanya SwamyAmit Kumar Cornell University.
Packing Rectangles into Bins Nikhil Bansal (CMU) Joint with Maxim Sviridenko (IBM)
Chapter 8 PD-Method and Local Ratio (4) Local ratio This ppt is editored from a ppt of Reuven Bar-Yehuda. Reuven Bar-Yehuda.
C&O 355 Mathematical Programming Fall 2010 Lecture 18 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
Minimizing Stall Time in Single Disk Susanne Albers, Naveen Garg, Stefano Leonardi, Carsten Witt Presented by Ruibin Xu.
Updated 21 April2008 Linear Programs with Totally Unimodular Matrices.
Multicommodity flow, well-linked terminals and routing problems Chandra Chekuri Lucent Bell Labs Joint work with Sanjeev Khanna and Bruce Shepherd Mostly.
Implicit Hitting Set Problems Richard M. Karp Erick Moreno Centeno DIMACS 20 th Anniversary.
Flow in Network. Graph, oriented graph, network A graph G =(V, E) is specified by a non empty set of nodes V and a set of edges E such that each edge.
New algorithms for Disjoint Paths and Routing Problems
Lecture.6. Table of Contents Lp –rounding Dual Fitting LP-Duality.
Deterministic Algorithms for Submodular Maximization Problems Moran Feldman The Open University of Israel Joint work with Niv Buchbinder.
1 Approximation Algorithms for Generalized Min-Sum Set Cover Ravishankar Krishnaswamy Carnegie Mellon University joint work with Nikhil Bansal and Anupam.
Approximating Buy-at-Bulk and Shallow-Light k-Steiner Trees Mohammad T. Hajiaghayi (CMU) Guy Kortsarz (Rutgers) Mohammad R. Salavatipour (U. Alberta) Presented.
1 Approximation Algorithms for Generalized Scheduling Problems Ravishankar Krishnaswamy Carnegie Mellon University joint work with Nikhil Bansal, Anupam.
C&O 355 Lecture 19 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
TU/e Algorithms (2IL15) – Lecture 12 1 Linear Programming.
Approximation Algorithms based on linear programming.
Lap Chi Lau we will only use slides 4 to 19
Generalized Sparsest Cut and Embeddings of Negative-Type Metrics
Topics in Algorithms Lap Chi Lau.
Distributed Submodular Maximization in Massive Datasets
Facility Location with Client Latencies: LP-based Approximation Algorithms for Minimum Latency Problems Chaitanya Swamy University of Waterloo Joint work.
Dynamic and Online Algorithms for Set Cover
Discrepancy and Optimization
On Approximating Covering Integer Programs
Flow Feasibility Problems
Clustering.
Chapter 1. Formulations.
Presentation transcript:

Approximation Algorithms for Capacitated Set Cover Ravishankar Krishnaswamy (joint work with Nikhil Bansal and Barna Saha)

Approximating Set Cover Given m sets, n elements Find minimum cost collection of sets to cover all elements Greedy: ln n approximation [Feige]: ln n hardness of approximation

Not the end of story Several set systems (X,S) admit much better approximations e.g. geometric covering, totally unimodular systems, small hereditary discrepancy, small VC-dimension, etc. Can solve these either exactly or upto O(1) factors What about the capacitated versions?

Capacitated Set Cover Instance: Sets and Elements Sets have capacities and costs Elements have demands Find minimum cost collection of sets total capacity of sets covering an element is at least its demand eg: capacitated network design, flowtime, and many more applications

Capacitated Set Cover In general, O(log n)-approximation is known Meta: Is it only the structure of the set system that determines the approximability? Can we obtain improved approximations for special cases like TU matrices? Initiated by Chakrabarty, Grant, and Konemann [2010]

Results of Chakrabarty et al. Capacitated Set Cover Integrality Gap Multi Cover Integrality Gap Priority Cover Integrality Gap [CGK] conjecture CSC has same approximability as 0-1 problem [CGK] conjecture CSC has same approximability as 0-1 problem MC is often as easy as 0/1 Problem

Priority Cover Problem Input: Sets (costs) and Elements both have priorities Min cost collection of sets to “cover” elements element is only covered by sets of higher priority A [CGK]: there are log c max priorities

Priority Covering Good News: remains a 0-1 problem Bad News: alters the structure of matrix anding with triangular matrix of 1s e.g. original matrix could be totally unimodular but not any more… How well can we approximate this problem? Theorem: O( α log 2 k) approximation where α is integrality gap of 0/1 problem Theorem: O( α log 2 k) approximation where α is integrality gap of 0/1 problem Corollary: O( α log log 2 C) approximation for CSC where α is integrality gap of 0/1 problem Corollary: O( α log log 2 C) approximation for CSC where α is integrality gap of 0/1 problem k: no. of priorities

Roadmap Introduction Problem Definition Priority Covering Problems Approximating PCPs Lower Bounds Conclusion

Our Rounding Algorithm Very simple: divide and conquer for simplicity, assume the original matrix is TU Fact 1: Each subdivision is also TU Fact 2: There are log k subdivisions in total determinant of any submatrix is 0,1, -1 e f ST

What we have done… Each set appears in log k copies Each elements fractionally covered to extent 1/ log k in some copy Each copy is TU and therefore integral polytope Gives O(log 2 k) approximation for TU matrices Also works if hereditary int. gap is α

Hereditary Systems? Given set system (X,S) if all subsystems (X’, S’) have int. gap α then hereditary int. gap is α TU systems, geometric instances, bounded hereditary discrepancy, etc. steiner tree cut system

Hereditary Discrepancy generalizes Total Unimodularity A matrix M has Herdisc α if for any subset of columns there exists a {1,-1} coloring s.t. any row sums to at most α

HerDisc to Her. Integrality Gap consider fractional solution (scale it by α ) think of fractional assignment in bits x i = let S: all sets for which lsb is 1 obtain {1,-1} coloring for variables in S increase or decrease according to coloring end up with integer solution total loss of coverage in each row < α ; solution feasible end up with integer solution total loss of coverage in each row < α ; solution feasible

Roadmap Introduction Problem Definition Priority Covering Problems Approximating PCPs: O(log 2 k) Sample Application Lower Bounds Conclusion

Flow Time Scheduling Jobs with different processing times and weights arrive over time Schedule them on single processor minimize “weighted flow time” of the jobs can preempt jobs

Relaxation in [BP10] t1t1 t2t2 (r 1, w 1, p 1 )(r 2, w 2, p 2 )(r 3, w 3, p 3 )

Structure of 0/1 Set System Elements are intervals Sets are also intervals, but must overlap t1t1 t2t2 Can encode it as priority line cover problem! We need to solve priority version of this problem our theorem Bansal and Pruhs used powerful result about weighted geometric set covering [Varadarajan] to get O(log k) approximation This gives very simple O(log 2 k)

Roadmap Introduction Problem Definition Priority Covering Problems Approximating PCPs: O(log 2 k) Sample Application: Flowtime Lower Bounds Conclusion

Lower Bounds O(log 2 k) loss in approximating PSC Is it necessary? Don’t know, but log k loss is unavoidable There exist set systems with hereditary int. gap of 2 but the priority version has log k gap use connections to recent lower bounds of ϵ-net in geometric graphs of low dimension In particular, 1/ϵ log 1/ϵ bound for 2-D Rectangle Covers [Pach Tardos 10]

Lower Bound Reduction 2-Dimension RC=Priority P 2-Dimension RC with=P rectangles fixed at X-axis (just Priority Line Cover in disguise) integrality gap of 2 is known

To Conclude… Capacitated Set Cover Priority Covering Approximating PCPs: O( α log 2 k) If 0/1 problem has O( α ) hereditary int. gap. e.g., if 0/1 problem has O( α ) her. disc. Lower Bounds: Ω( α log k) Can we close this gap? Thanks!

LP relaxation Naïve: bad Integrality Gap of Knapsack high capacity set, high cost element of low demand LP cheats by picking this set to a very tiny extent Fix: add “Knapsack Cover” inequalities!