Students will be able to : a) Resolve a 2-D vector into components

Slides:



Advertisements
Similar presentations
FORCE VECTORS, VECTOR OPERATIONS & ADDITION COPLANAR FORCES
Advertisements

FORCE VECTORS, VECTOR OPERATIONS & ADDITION COPLANAR FORCES Today’s Objective: Students will be able to : a) Resolve a 2-D vector into components. b) Add.
APPLICATION OF VECTOR ADDITION
WHAT IS MECHANICS? Either the body or the forces could be large or small. Study of what happens to a “ thing ” (the technical name is “ BODY ” ) when FORCES.
Physics 1D03 - Lecture 31 Vectors Scalars and Vectors Vector Components and Arithmetic Vectors in 3 Dimensions Unit vectors i, j, k Serway and Jewett Chapter.
3 – D VECTORS (Section 2.5) Today’s Objectives: Students will be able to : a) Represent a 3-D vector in a Cartesian coordinate system. b) Find the magnitude.
POSITION & FORCE VECTORS (Sections ) Today’s Objectives: Students will be able to : a) Represent a position vector in Cartesian coordinate form,
3 – D VECTORS (Section 2.5) Today’s Objectives: Students will be able to : a) Represent a 3-D vector in a Cartesian coordinate system. b) Find the magnitude.
DOT PRODUCT (Section 2.9) Today’s Objective:
ENGINEERING MECHANICS STATICS & DYNAMICS
EQUIVALENT SYSTEMS, RESULTANTS OF FORCE AND COUPLE SYSTEM, & FURTHER REDUCTION OF A FORCE AND COUPLE SYSTEM Today’s Objectives: Students will be able.
Vector Operation and Force Analysis
Scalar and Vector Fields
ENGINEERING MECHANICS CHAPTER 2 FORCES & RESULTANTS
POSITION VECTORS & FORCE VECTORS
Chapter 3 Vectors.
Ch. 3, Kinematics in 2 Dimensions; Vectors. Vectors General discussion. Vector  A quantity with magnitude & direction. Scalar  A quantity with magnitude.
MOMENT ABOUT AN AXIS Today’s Objectives: Students will be able to determine the moment of a force about an axis using a) scalar analysis, and b) vector.
POSITION & FORCE VECTORS (Sections ) Today’s Objectives: Students will be able to : a) Represent a position vector in Cartesian coordinate form,
POSITION VECTORS & FORCE VECTORS In-Class Activities: Check Homework Reading Quiz Applications / Relevance Write Position Vectors Write a Force Vector.
Copyright © 2010 Pearson Education South Asia Pte Ltd
POSITION VECTORS & FORCE VECTORS
Scalars A scalar is any physical quantity that can be completely characterized by its magnitude (by a number value) A scalar is any physical quantity that.
Physics and Physical Measurement Topic 1.3 Scalars and Vectors.
Vector Addition. What is a Vector A vector is a value that has a magnitude and direction Examples Force Velocity Displacement A scalar is a value that.
Vectors Chapter 3, Sections 1 and 2. Vectors and Scalars Measured quantities can be of two types Scalar quantities: only require magnitude (and proper.
Adding Vectors Graphically CCHS Physics. Vectors and Scalars Scalar has only magnitude Vector has both magnitude and direction –Arrows are used to represent.
DOT PRODUCT In-Class Activities: Check Homework Reading Quiz Applications / Relevance Dot product - Definition Angle Determination Determining the Projection.
Types of Coordinate Systems
CHAPTER 5 FORCES IN TWO DIMENSIONS
Professor Martinez. COMMON CONVERSION FACTORS  1 ft = m  1 lb = N  1 slug = kg  Example: Convert a torque value of 47 in lb.
FORCE VECTORS, VECTOR OPERATIONS & ADDITION COPLANAR FORCES In-Class activities: Check Homework Reading Quiz Application of Adding Forces Parallelogram.
Engineering Mechanics: Statics Chapter 2: Force Vectors Chapter 2: Force Vectors.
ENGR 3340: Fundamentals of Statics and Dynamics Fundamentals of Statics and Dynamics - ENGR 3340 Professor: Dr. Omar E. Meza Castillo
Nature is beautiful nature is fun love it or hate it nature is something to love nature is god's gift to us Nature is what we see...
Midterm Review  Five Problems 2-D/3-D Vectors, 2-D/3-D equilibrium, Dot Product, EoE, Cross Product, Moments  Closed Book & Note  Allowed to bring.
Homework Complete Problems: Complete all work in pencil
Chapter 3 Vectors. Vector quantities  Physical quantities that have both numerical and directional properties Mathematical operations of vectors in this.
Vectors Vector: a quantity that has both magnitude (size) and direction Examples: displacement, velocity, acceleration Scalar: a quantity that has no.
Introduction to Vectors Lesson Scalars vs. Vectors Scalars  Quantities that have size but no direction  Examples: volume, mass, distance, temp.
Vectors. Vector quantity has magnitude and direction. is represented by an arrow. Example: velocity, force, acceleration Scalar quantity has magnitude.
Vectors.
Homework Review (Ch. 1 & 2) 1-6 (pg. 15) 1-8 (pg. 15) 2-10 (pg. 28) 2-32 (pg. 39) 2-57 (pg. 42)  Any questions???
Kinematics & Dynamics in 2 & 3 Dimensions; Vectors First, a review of some Math Topics in Ch. 1. Then, some Physics Topics in Ch. 4!
Why do we study statics? To design this rocket and its structure we require basic knowledge of both statics and dynamics which form the subject matter.
Vectors Physics Book Sections Two Types of Quantities SCALAR Number with Units (MAGNITUDE or size) Quantities such as time, mass, temperature.
Physics I Unit 4 VECTORS & Motion in TWO Dimensions astr.gsu.edu/hbase/vect.html#vec1 Web Sites.
POSITION VECTORS & FORCE VECTORS
Vector Addition Notes. ► A scalar quantity is a number or measurement which has only a magnitude (size)—examples: Time, mass, volume ► A vector quantity.
Physics and Physical Measurement Topic 1.3 Scalars and Vectors.
SIMPLIFICATION OF FORCE AND COUPLE SYSTEMS & FURTHER SIMPLIFICATION OF A FORCE AND COUPLE SYSTEM Today’s Objectives: Students will be able to: a)Determine.
EQUIVALENT SYSTEMS, RESULTANTS OF FORCE AND COUPLE SYSTEM, & FURTHER REDUCTION OF A FORCE AND COUPLE SYSTEM Today’s Objectives: Students will be able to:
Chapter 3 Lecture 5: Vectors HW1 (problems): 1.18, 1.27, 2.11, 2.17, 2.21, 2.35, 2.51, 2.67 Due Thursday, Feb. 11.
Statics, Fourteenth Edition R.C. Hibbeler Copyright ©2016 by Pearson Education, Inc. All rights reserved. In-Class Activities: Check Homework Reading Quiz.
Chapter 3 Vectors. Vector quantities  Physical quantities that have both numerical and directional properties Mathematical operations of vectors in this.
Statics, Fourteenth Edition R.C. Hibbeler Copyright ©2016 by Pearson Education, Inc. All rights reserved. In-Class activities: Check Homework Reading Quiz.
FORCE VECTORS, VECTOR OPERATIONS & ADDITION COPLANAR FORCES
FORCE VECTORS, VECTOR OPERATIONS & ADDITION COPLANAR FORCES
FORCE VECTORS, VECTOR OPERATIONS & ADDITION COPLANAR FORCES
Engineering Mechanics Statics
Lecture #2 (ref Ch 2) Vector Operation and Force Analysis 1 R. Michael PE 8/14/2012.
FORCE VECTORS, VECTOR OPERATIONS & ADDITION COPLANAR FORCES
Structure I Course Code: ARCH 208 Dr. Aeid A. Abdulrazeg
Statics Dr. Aeid A. Abdulrazeg Course Code: CIVL211
Vectors Scalars Vectors Magnitude only Time, temperature, speed
Answers: 1. C 2. D READING QUIZ
FORCE VECTORS, VECTOR OPERATIONS & ADDITION COPLANAR FORCES
Scalars A scalar quantity is a quantity that has magnitude only and has no direction in space Examples of Scalar Quantities: Length Area Volume Time Mass.
CHAPTER 2 FORCE VECTOR.
Serway and Jewett Chapter 3
Presentation transcript:

Students will be able to : a) Resolve a 2-D vector into components 2–D VECTOR ADDITION Today’s Objective: Students will be able to : a) Resolve a 2-D vector into components b) Add 2-D vectors using Cartesian vector notations. In-Class activities: Check homework Reading quiz Application of adding forces Parallelogram law Resolution of a vector using Cartesian vector notation (CVN) Addition using CVN Attention quiz Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4

1. Which one of the following is a scalar quantity? READING QUIZ 1. Which one of the following is a scalar quantity? A) Force B) Position C) Mass D) Velocity 2. For vector addition you have to use ______ law. A) Newton’s Second B) the arithmetic C) Pascal’s D) the parallelogram Answers: 1. C 2. D Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4

APPLICATION OF VECTOR ADDITION There are four concurrent cable forces acting on the bracket. How do you determine the resultant force acting on the bracket ? Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4

SCALARS AND VECTORS (Section 2.1) Scalars Vectors Examples: mass, volume force, velocity Characteristics: It has a magnitude It has a magnitude (positive or negative) and direction Addition rule: Simple arithmetic Parallelogram law Special Notation: None Bold font, a line, an arrow or a “carrot” Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4

VECTOR OPERATIONS (Section 2.2) Scalar Multiplication and Division Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4

VECTOR ADDITION USING EITHER THE PARALLELOGRAM LAW OR TRIANGLE Triangle method (always ‘tip to tail’): How do you subtract a vector? How can you add more than two concurrent vectors graphically ? Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4

RESOLUTION OF A VECTOR “Resolution” of a vector is breaking up a vector into components. It is kind of like using the parallelogram law in reverse. Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4

CARTESIAN VECTOR NOTATION (Section 2.4) We ‘ resolve’ vectors into components using the x and y axes system Each component of the vector is shown as a magnitude and a direction. The directions are based on the x and y axes. We use the “unit vectors” i and j to designate the x and y axes. Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4

F = Fx i + Fy j or F' = F'x i + F'y j For example, F = Fx i + Fy j or F' = F'x i + F'y j The x and y axes are always perpendicular to each other. Together,they can be directed at any inclination. Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4

ADDITION OF SEVERAL VECTORS Step 1 is to resolve each force into its components Step 2 is to add all the x components together and add all the y components together. These two totals become the resultant vector. Step 3 is to find the magnitude and angle of the resultant vector. Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4

Example of this process, Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4

You can also represent a 2-D vector with a magnitude and angle. Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4

Given: Three concurrent forces acting on a bracket. EXAMPLE Given: Three concurrent forces acting on a bracket. Find: The magnitude and angle of the resultant force. Plan: a) Resolve the forces in their x-y components. b) Add the respective components to get the resultant vector. c) Find magnitude and angle from the resultant components. Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4

EXAMPLE (continued) F1 = { 15 sin 40° i + 15 cos 40° j } kN = { 9.642 i + 11.49 j } kN F2 = { -(12/13)26 i + (5/13)26 j } kN = { -24 i + 10 j } kN F3 = { 36 cos 30° i – 36 sin 30° j } kN = { 31.18 i – 18 j } kN Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4

Summing up all the i and j components respectively, we get, EXAMPLE (continued) Summing up all the i and j components respectively, we get, FR = { (9.642 – 24 + 31.18) i + (11.49 + 10 – 18) j } kN = { 16.82 i + 3.49 j } kN x y  FR FR = ((16.82)2 + (3.49)2)1/2 = 17.2 kN  = tan-1(3.49/16.82) = 11.7° Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4

CONCEPT QUIZ 1. Can you resolve a 2-D vector along two directions, which are not at 90° to each other? A) Yes, but not uniquely. B) No. C) Yes, uniquely. 2. Can you resolve a 2-D vector along three directions (say at 0, 60, and 120°)? A) Yes, but not uniquely. B) No. C) Yes, uniquely. Answers: 1. C 2. A Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4

Given: Three concurrent forces acting on a bracket GROUP PROBLEM SOLVING Given: Three concurrent forces acting on a bracket Find: The magnitude and angle of the resultant force. Plan: a) Resolve the forces in their x-y components. b) Add the respective components to get the resultant vector. c) Find magnitude and angle from the resultant components. Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4

GROUP PROBLEM SOLVING (continued) F1 = { (4/5) 850 i - (3/5) 850 j } N = { 680 i - 510 j } N F2 = { -625 sin(30°) i - 625 cos(30°) j } N = { -312.5 i - 541.3 j } N F3 = { -750 sin(45°) i + 750 cos(45°) j } N { -530.3 i + 530.3 j } N Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4

GROUP PROBLEM SOLVING (continued) Summing up all the i and j components respectively, we get, FR = { (680 – 312.5 – 530.3) i + (-510 – 541.3 + 530.3) j }N = { - 162.8 i - 521 j } N  y x FR FR = ((162.8)2 + (521)2) ½ = 546 N = tan–1(521/162.8) = 72.64° or From Positive x axis  = 180 + 72.64 = 253 ° Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4

ATTENTION QUIZ 1. Resolve F along x and y axes and write it in vector form. F = { ___________ } N A) 80 cos (30°) i - 80 sin (30°) j B) 80 sin (30°) i + 80 cos (30°) j C) 80 sin (30°) i - 80 cos (30°) j D) 80 cos (30°) i + 80 sin (30°) j 30° x y F = 80 N 2. Determine the magnitude of the resultant (F1 + F2) force in N when F1 = { 10 i + 20 j } N and F2 = { 20 i + 20 j } N . A) 30 N B) 40 N C) 50 N D) 60 N E) 70 N Answers: 1. C 2. C Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4

End of the Lecture Let Learning Continue Statics:The Next Generation Mehta & Danielson Lecture Notes for Sections 2.1,2.2,2.4