Uses of Chern-Simons Actions J. Zanelli CECS – Valdivia (Chile) Ten Years of the AdS/CFT Conjecture Buenos Aires, December 2007.

Slides:



Advertisements
Similar presentations
Eric Prebys, FNAL.  We have focused largely on a kinematics based approach to beam dynamics.  Most people find it more intuitive, at least when first.
Advertisements

Theories of gravity in 5D brane-world scenarios
Noncommutative Geometries in M-theory David Berman (Queen Mary, London) Neil Copland (DAMTP, Cambridge) Boris Pioline (LPTHE, Paris) Eric Bergshoeff (RUG,
Magnetic Monopoles E.A. Olszewski Outline I. Duality (Bosonization) II. The Maxwell Equations III. The Dirac Monopole (Wu-Yang) IV. Mathematics Primer.
Hot topics in Modern Cosmology Cargèse - 10 Mai 2011.
A journey inside planar pure QED CP3 lunch meeting By Bruno Bertrand November 19 th 2004.
Heterotic strings and fluxes Based on: K. Becker, S. Sethi, Torsional heterotic geometries, to appear. K. Becker, C. Bertinato, Y-C. Chung, G. Guo, Supersymmetry.
Weyl gravity as general relativity Conformal gauge theories of gravity Midwest Relativity Meeting 2013 James T Wheeler Work done in collaboration with.
Hamiltonian Formulation of General Relativity Hridis Kumar Pal UFID: Project Presentation for PHZ 6607, Special and General Relativity I Fall,
THE “EXTENDED PHASE SPACE” APPROACH TO QUANTUM GEOMETRODYNAMICS: WHAT CAN IT GIVE FOR THE DEVELOPMENT OF QUANTUM GRAVITY T. P. Shestakova Department of.
Lattice Spinor Gravity Lattice Spinor Gravity. Quantum gravity Quantum field theory Quantum field theory Functional integral formulation Functional integral.
Cosimo Stornaiolo INFN-Sezione di Napoli MG 12 Paris July 2009.
Tomographic approach to Quantum Cosmology Cosimo Stornaiolo INFN – Sezione di Napoli Fourth Meeting on Constrained Dynamics and Quantum Gravity Cala Gonone.
The attractor mechanism, C-functions and aspects of holography in Lovelock gravity Mohamed M. Anber November HET bag-lunch.
Microscopic entropy of the three-dimensional rotating black hole of BHT massive gravity of BHT massive gravity Ricardo Troncoso Ricardo Troncoso In collaboration.
Centro de Estudios Científicos CECS-Valdivia-Chile.
Gerard ’t Hooft Chennai, November 17, 2009 Utrecht University.
8. Forces, Connections and Gauge Fields 8.0. Preliminary 8.1. Electromagnetism 8.2. Non-Abelian Gauge Theories 8.3. Non-Abelian Theories and Electromagnetism.
Electric-Magnetic Duality On A Half-Space Edward Witten Rutgers University May 12, 2008.
On the effects of relaxing On the effects of relaxing the asymptotics of gravity in three dimensions in three dimensions Ricardo Troncoso Centro de Estudios.
Excited QCD 2010, February 3 (Tatra National Park, 2010) Holographic Models for Planar QCD without AdS/CFT Correspondence Sergey Afonin Ruhr-University.
Symmetries and conservation laws
Centro de Estudios Científicos CECS-Valdivia-Chile.
Utrecht University Gerard ’t Hooft CERN Black Hole Institute.
HOLOGRAPHY, DIFFEOMORHISMS, AND THE CMB Finn Larsen University of Michigan Quantum Black Holes at OSU Ohio Center for Theoretical Science September
GENERAL PRINCIPLES OF BRANE KINEMATICS AND DYNAMICS Introduction Strings, branes, geometric principle, background independence Brane space M (brane kinematics)
Is Black Hole an elementary particle? By Hoi-Lai Yu IPAS, Oct 30, 2007.
An introduction to the Gravity/Fluid correspondence and its applications Ya-Peng Hu College of Science, Nanjing University of Aeronautics and Astronautics,
SL(2,Z) Action on AdS/BCFT and Hall conductivity Mitsutoshi Fujita Department of Physics, University of Washington Collaborators : M. Kaminski and A. Karch.
The nonabelian gauge fields and their dynamics in the finite space of color factors Radu Constantinescu, Carmen Ionescu University of Craiova, 13 A. I.
L.I. Petrova “Specific features of differential equations of mathematical physics.” Investigation of the equations of mathematical physics with the help.
Derivation of the Friedmann Equations The universe is homogenous and isotropic  ds 2 = -dt 2 + a 2 (t) [ dr 2 /(1-kr 2 ) + r 2 (dθ 2 + sinθ d ɸ 2 )] where.
The embedding-tensor formalism with fields and antifields. Antoine Van Proeyen K.U. Leuven Moscow, 4th Sakharov conf., May 21, 2009.
Super Virasoro Algebras from Chiral Supergravity Ibaraki Univ. Yoshifumi Hyakutake Based on arXiv:1211xxxx + work in progress.
ANOMALIES AND SMALL BLACK HOLES Finn Larsen University of Michigan M-Theory in the City Queen Mary University of London, Nov 9-11, 2006.
The Geometry of Moduli Space and Trace Anomalies. A.Schwimmer (with J.Gomis,P-S.Nazgoul,Z.Komargodski, N.Seiberg,S.Theisen)
Quantum Gravity and emergent metric Quantum Gravity and emergent metric.
Wednesday, Mar. 5, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #13 Wednesday, Mar. 5, 2003 Dr. Jae Yu Local Gauge Invariance and Introduction.
Z THEORY Nikita Nekrasov IHES/ITEP Nagoya, 9 December 2004.
II Russian-Spanish Congress “Particle and Nuclear Physics at all scales and Cosmology”, Saint Petersburg, Oct. 4, 2013 RECENT ADVANCES IN THE BOTTOM-UP.
Quantum Mechanics on biconformal space A measurement theory A gauge theory of classical and quantum mechanics; hints of quantum gravity Lara B. Anderson.
Wilsonian approach to Non-linear sigma models Etsuko Itou (YITP, Japan) Progress of Theoretical Physics 109 (2003) 751 Progress of Theoretical Physics.
First Steps Towards a Theory of Quantum Gravity Mark Baumann Dec 6, 2006.
The inclusion of fermions – J=1/2 particles
Torsional heterotic geometries Katrin Becker ``14th Itzykson Meeting'' IPHT, Saclay, June 19, 2009.
P Spring 2002 L4Richard Kass Conservation Laws When something doesn’t happen there is usually a reason! Read: M&S Chapters 2, 4, and 5.1, That something.
Holographic Renormalization Group with Gravitational Chern-Simons Term Takahiro Nishinaka ( Osaka U.) (Collaborators: K. Hotta, Y. Hyakutake, T. Kubota.
Monday, Apr. 11, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #18 Monday, Apr. 11, 2005 Dr. Jae Yu Symmetries Local gauge symmetry Gauge fields.
Boundary conditions for SU(2) Yang-Mills on AdS 4 Jae-Hyuk Oh at 2012 workshop for string theory and cosmology, Pusan, Korea. Dileep P. Jatkar and Jae-Hyuk.
P-Term Cosmology A.C. Davis (with C. Burrage) ,
University of Oslo & Caltech
ArXiv: (hep-th) Toshiaki Fujimori (Tokyo Institute of Technology) Minoru Eto, Sven Bjarke Gudnason, Kenichi Konishi, Muneto Nitta, Keisuke Ohashi.
Natsumi Nagata E-ken Journal Club December 21, 2012 Minimal fields of canonical dimensionality are free S. Weinberg, Phys. Rev. D86, (2012) [ ].
Electic-Magnetic Duality On A Half-Space Edward Witten March 9, 2008.
Wednesday, Nov. 15, 2006PHYS 3446, Fall 2006 Jae Yu 1 PHYS 3446 – Lecture #19 Wednesday, Nov. 15, 2006 Dr. Jae Yu 1.Symmetries Local gauge symmetry Gauge.
Fundamental principles of particle physics Our description of the fundamental interactions and particles rests on two fundamental structures :
“Applied” String Theory Pinaki Banerjee The Institute of Mathematical Sciences, Chennai Department of Physics, Visva Bharati 12 th July, 2013.
Anisotropic Mechanics J.M. Romero, V. Cuesta, J.A. Garcia, and J. D. Vergara Instituto de Ciencias Nucleares, UNAM, Mexico.
A TEST FOR THE LOCAL INTRINSIC LORENTZ SYMMETRY
PHYS 3446 – Lecture #23 Symmetries Why do we care about the symmetry?
Lagrange Formalism & Gauge Theories
STRING THEORY AND M-THEORY: A Modern Introduction
Ariel Edery Bishop’s University
3D (Higher Spin) Gravity Black Holes and Statistical Entropy
in collaboration with M. Bojowald, G. Hossain, S. Shankaranarayanan
Hyun Seok Yang Center for Quantum Spacetime Sogang University
Quantized K
Relativistic Classical Mechanics
Hysteresis Curves from 11 dimensions
Gauge theory and gravity
Presentation transcript:

Uses of Chern-Simons Actions J. Zanelli CECS – Valdivia (Chile) Ten Years of the AdS/CFT Conjecture Buenos Aires, December 2007

A typical Chern-Simons action is something like this: A typical Yang-Mills action is something like this: or this…

Chern-Simons lagrangians define gauge field theories in a class different from Yang-Mills: They are explicit functions of the connection (A), not local functions of the curvature (F) only. Yet, they yield gauge-invariant field equations. Related to homotopic/topological invariants on fiber bundles: characteristic classes. They require no metric; just a Lie algebra (not necessarily semisimple); no adjustable parameters, conformally invariant. More fundamental(?)

They naturally couple to branes. Their quantization corresponds to sum over holonomies in an embedding space. The classical field equations are consistency conditions for those couplings. CS theories are not exotic but a rather common occurrence in nature: Anomalies, quantum Hall effect, 11D supergravity (CJS), superconductivity, 2+1 gravity, 2n+1 gravity, all of classical mechanics,... They are very sensitive to the dimension.

i 1. CS action in 0+1 dimensions

E-M coupling Gauge invariance A μ (x) →A μ (x)+∂ μ Ω(x), is ensured by current conservation, ∂ μ j μ =0, provided Ω(z(+∞))=Ω(z(-∞)). z e A μ (x) Γ Not quite gauge invariant, but quasi-invariant. ∙

This expression is invariant under This coupling is consistent with the minimal derivative substitution Lorentz transformations, (Λ μν ) Gauge transformations A A+dΩ(x) Gen. coordinate transf. z μ z ’ μ (z) Good for quantization:

Take for an abelian connection and set n=0: Is this a sensible action? ? ? ? not exactly… The simplest Chern-Simons action 0+1 CS theory

Varying the action, This only means δA=dΩ with Ω(-∞)=Ω(∞), or ∂Γ=0. The classical configurations are arbitrary U(1) connections with PBC or living in a periodic 1d spacetime Alternatively, I can also be viewed as an action for the embedding coordinates z μ,

Varying the action, The classical orbits are those with zero Lorentz force: the electric and magnetic forces cancel each other out. N.B.: In order to obtain the equation of motion, z must satisfy periodic boundary conditions. ∙ ∙

A bit about the quantum theory Does this describe a physically sensible system? What are the degrees of freedom? Thus, the integral is dominated by those orbits for which the holonomies are quantized, Flux quantization

Varying w.r.t. z i (t) yields Hamilton’s equations: This action describes a mechanical system where eA 0 (z)= -H and eA i (z)=p i ∙ Let z 0 =t, z μ =(t, z i ), i=1,2,∙∙∙,2s. ∙ e z 0 =t zizi zμzμ where F=dA and E i = ∂ i A(z). ∙

Any mechanical system with s degrees of freedom can be described by a 0+1 C-S action in a (2s+1)-dimensional target space. Invariance under canonical transf. Gauge invariance Vanishing Lorentz force Hamilton’s equations Classical mechanics Chern-Simons Gen. coordinate transformations Invariance under time reparam. Flux/holonomy quantization Bohr-Sommerfeld quantization

More dimensions… A C-S action in 2+1 dimensions can be viewed as a coupling between a brane and an external gauge field Invariant under: Gen. coord. transf. on the worldvolume z μ z’ μ (z) Lorentz transformations on the target space (Λ μ ν ) Gauge transformations A A+dΩ [quasi-invariant] z(xi)z(xi)

For D=3, 5, 7,… New possibilities arise: Nonabelian algebras A(z) can be dynamical (propagating in the worldvolume) Quantization? (open problem) Degeneracy (for D≥5) Worldvolume dynamics (gravity) z(xi)z(xi)

i 2. CS action in 2n+1 dimensions

i Non abelian CS action in 2n+1 dimensions whereThe coefficients c 1, … c n are fixed rational numbers, Invariant under gauge transformations (up to boundary terms) under

L δL=0 Comment 0+1 eA -- No dynamics for A 2+1 A=pure gauge nondegenerate 2n+1 Nontrivial, propagating, degenerate C-S dynamics

Degeneracy of CS theories (D=2n+1≥5) The problem arises from the fact that for D=2n+1 with n≥2, the field equations are nonlinear in the curvature, where G k are the generators of the Lie algebra. The linearized perturbations around a given classical configuration F 0, obey The dynamics depends on the form of F 0.

Consequences of the degeneracy Unpredictability of evolution Irreversibility of evolution Loss of information about the initial data Freezing out of degrees of freedom

D/source QuantizationComment Dirac charge quant. cond. point particle Flux/Holonomy (0-brane) Bohr-Sommerfeld quant. Finite, power- membrane counting renormalizable Anybody’s guess 2n-brane How?

All the interesting features of CS forms originate from their relation with characteristic classes. In general, Homogeneous gauge-invariant polynomial Characteristic class (Chern-Weil, Euler, Pontryagin, …) Its integral defines a homotopic invariant of the manifold Pontryagin 4-form For example,

i 3. CS Gravity actions in 2n+1 dimensions

1. Equivalence Principle: Spacetime is locally approximated by Minkowski space and has the same (local) Lorentz symmetry. GR is the oldest known nonabelian gauge theory for the group SO(3,1). 2. Gravitation should be a theory whose output is the spacetime geometry. Therefore, it is best to start with a theory that makes no assumptions about the local geometry. 1&2  Chern-Simons theory is probably a better choice

There are two characteristic classes associated to the rotation groups SO(s,t): the Euler and the Pontryagin classes. Associated with each of them there are the corresponding CS actions ): Action (first order formalism ): Vielbein (metricity) Connection (parallelism) = = Curvature 2-form = = Torsion 2-form

1. Combine the vielbein and spin connection into a connection for the dS, AdS, or Poincaré group: Steps for constructing CS gravities: 2. Select the bracket that corresponds to the invariant characteristic class to be used (Euler or Pontryagin), e.g., 3. Write down the lagrangian

However, they only exist in odd dimensions… CS gravities (D=2n-1) (summary) No dimensionful constants (scale invariants) No arbitrary adjustable/renormalizable constants Possess black hole solutions Admit and limit Admit SUSY extensions for and any odd D, and yield field theories with spins ≤ 2 only Give rise to acceptable D=4 effective theories Some form of dimensional reduction is needed A.Anabalón, S.Willison, J.Z: hep-th/ ; hep-th/

4. Summary

CS actions have been used in physics much longer than one usually thinks. t CS t heories can be viewed as boundary theories coming from topological field theories in even D= 2n manifolds. They have no free adjustable parameters and require no metric structure. There exist CS (super-) gravities with dimensionless couplings, all fields have spins ≤ 2 and the metric is not a fundamental field but a condensate… Degeneracy for D≥5: limited predictability, irreversible loss of degrees of freedom, dynamical dimensional reduction. They are so exceptional, it’s at least worth studying them!

Thanks!