Chapter 5 Linear Inequalities and Linear Programming

Slides:



Advertisements
Similar presentations
Lesson 08 Linear Programming
Advertisements

LIAL HORNSBY SCHNEIDER
Chapter 6 Linear Programming: The Simplex Method
CCMIII U2D4 Warmup This graph of a linear programming model consists of polygon ABCD and its interior. Under these constraints, at which point does the.
Water Resources Development and Management Optimization (Linear Programming) CVEN 5393 Feb 18, 2013.
BA 452 Lesson A.2 Solving Linear Programs 1 1ReadingsReadings Chapter 2 An Introduction to Linear Programming.
5.2 Linear Programming in two dimensions: a geometric approach In this section, we will explore applications which utilize the graph of a system of linear.
Linear Inequalities and Linear Programming Chapter 5 Dr.Hayk Melikyan/ Department of Mathematics and CS/ Linear Programming in two dimensions:
Learning Objectives for Section 5.3
Chapter 5 Linear Inequalities and Linear Programming Section 3 Linear Programming in Two Dimensions: A Geometric Approach.
Lesson 7.6, page 767 Linear Programming
Chapter 8: Linear Programming
Linear Programming Unit 2, Lesson 4 10/13.
Objectives: Set up a Linear Programming Problem Solve a Linear Programming Problem.
Finite Mathematics & Its Applications, 10/e by Goldstein/Schneider/SiegelCopyright © 2010 Pearson Education, Inc. 1 of 54 Chapter 3 Linear Programming,
LINEAR PROGRAMMING: THE GRAPHICAL METHOD
6  Graphing Systems of Linear Inequalities in Two Variables  Linear Programming Problems  Graphical Solutions of Linear Programming Problems  The Simplex.
Linear Programming Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Linear programming is a strategy for finding the.
Chapter 5 Linear Inequalities and Linear Programming Section 2 Systems of Linear Inequalities in Two Variables.
1 1 Slide LINEAR PROGRAMMING: THE GRAPHICAL METHOD n Linear Programming Problem n Properties of LPs n LP Solutions n Graphical Solution n Introduction.
1© 2003 by Prentice Hall, Inc. Upper Saddle River, NJ The Wyndor Glass Company Problem (Hillier and Liberman) The Wyndor Glass Company is planning.
Stevenson and Ozgur First Edition Introduction to Management Science with Spreadsheets McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies,
Chapter 5 Linear Inequalities and Linear Programming Section R Review.
Chapter 5.1 Systems of linear inequalities in two variables.
Linear Inequalities and Linear Programming Chapter 5
Algebra 2 Chapter 3 Notes Systems of Linear Equalities and Inequalities Algebra 2 Chapter 3 Notes Systems of Linear Equalities and Inequalities.
Algebra 2 Chapter 3 Notes Systems of Linear Equalities and Inequalities Algebra 2 Chapter 3 Notes Systems of Linear Equalities and Inequalities.
Linear Programming Chapter 13 Supplement.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 7.6 Linear Programming.
3.4 Linear Programming p Optimization - Finding the minimum or maximum value of some quantity. Linear programming is a form of optimization where.
P I can solve linear programing problem. Finding the minimum or maximum value of some quantity. Linear programming is a form of optimization where.
Graphing Linear Inequalities in Two Variables Chapter 4 – Section 1.
 A concert promoter wants to book a rock group for a stadium concert. A ticket for admission to the stadium playing field will cost $125, and a ticket.
Opener. Notes: 3.4 Linear Programming Optimization  Many real-life problems involve a process called optimization.  This means finding a maximum or.
Linear Programming: A Geometric Approach3 Graphing Systems of Linear Inequalities in Two Variables Linear Programming Problems Graphical Solution of Linear.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 5 Systems and Matrices Copyright © 2013, 2009, 2005 Pearson Education, Inc.
Linear Programming Introduction: Linear programming(LP) is a mathematical optimization technique. By “Optimization” technique we mean a method which attempts.
Linear Inequalities and Linear Programming Chapter 5 Dr.Hayk Melikyan Department of Mathematics and CS
5. Linear Programming Objectives: 1.Problem formulation 2.Solving an LP problem graphically 3.Bounded regions and corner points Refs: B&Z 5.2.
Linear Programming Problem. Definition A linear programming problem is the problem of optimizing (maximizing or minimizing) a linear function (a function.
3  Graphing Systems of Linear Inequalities in Two Variables  Linear Programming Problems  Graphical Solutions of Linear Programming Problems  Sensitivity.
Warm-Up 3.4 1) Solve the system. 2) Graph the solution.
Monday WARM-UP: TrueFalseStatementCorrected Statement F 1. Constraints are conditions written as a system of equations Constraints are conditions written.
1Barnett/Ziegler/Byleen Finite Mathematics 12e Learning Objectives for Section 5.2  The student will be able to solve systems of linear inequalities graphically.
3.4: Linear Programming Objectives: Students will be able to… Use linear inequalities to optimize the value of some quantity To solve linear programming.
Example 3.2 Graphical Solution Method | 3.1a | a3.3 Background Information n The Monet Company produces two type of picture frames, which.
Constraints Feasible region Bounded/ unbound Vertices
Warm-upWarm-up Sketch the region bounded by the system of inequalities: 1) 2) Sketch the region bounded by the system of inequalities: 1) 2)
LINEAR PROGRAMMING 3.4 Learning goals represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret.
1 What you will learn  Lots of vocabulary!  How to find the maximum and minimum value of a function given a set of “rules”
Sullivan Algebra and Trigonometry: Section 12.9 Objectives of this Section Set Up a Linear Programming Problem Solve a Linear Programming Problem.
Linear Programming: A Geometric Approach3 Graphing Systems of Linear Inequalities in Two Variables Linear Programming Problems Graphical Solution of Linear.
Slide 4- 1 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 1 Copyright © 2010 Pearson Education, Inc. Publishing.
2.7 Linear Programming Objectives: Use linear programming procedures to solve applications. Recognize situations where exactly one solution to a linear.
Digital Lesson Linear Programming.
Chapter 5 Linear Inequalities and Linear Programming
Chapter 5 Linear Inequalities and Linear Programming
Digital Lesson Linear Programming.
Copyright © Cengage Learning. All rights reserved.
Chapter 4-5 Systems of linear inequalities in two variables.
Linear Programming in Two Dimensions
Chapter 5 Linear Inequalities and Linear Programming
Linear Programming.
Linear Programming Objectives: Set up a Linear Programming Problem
LESSON 6–5 Linear Optimization.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
TBF General Mathematics - II Lecture – 9 : Linear Programming
Graphical solution A Graphical Solution Procedure (LPs with 2 decision variables can be solved/viewed this way.) 1. Plot each constraint as an equation.
Presentation transcript:

Chapter 5 Linear Inequalities and Linear Programming Section 3 Linear Programming in Two Dimensions: A Geometric Approach

Linear Programming in Two Dimensions: A Geometric Approach In this section, we will explore applications which utilize the graph of a system of linear inequalities.

A Familiar Example We have seen this problem before. An extra condition will be added to make the example more interesting. Suppose a manufacturer makes two types of skis: a trick ski and a slalom ski. Each trick ski requires 8 hours of design work and 4 hours of finishing. Each slalom ski requires 8 hours of design and 12 hours of finishing. Furthermore, the total number of hours allocated for design work is 160 and the total available hours for finishing work is 180. Finally, the number of trick skis produced must be less than or equal to 15. How many trick skis and how many slalom skis can be made under these conditions? Now, here is the twist: Suppose the profit on each trick ski is $5 and the profit for each slalom ski is $10. How many each of each type of ski should the manufacturer produce to earn the greatest profit?

Linear Programming Problem This is an example of a linear programming problem. Every linear programming problem has two components: 1. A linear objective function is to be maximized or minimized. In our case the objective function is Profit = 5x + 10y (5 dollars profit for each trick ski manufactured and $10 for every slalom ski produced). 2. A collection of linear inequalities that must be satisfied simultaneously. These are called the constraints of the problem because these inequalities give limitations on the values of x and y. In our case, the linear inequalities are the constraints.

Constraints x and y have to be positive The number of trick skis must be less than or equal to 15 Design constraint: 8 hours to design each trick ski and 8 hours to design each slalom ski. Finishing constraint: 4 hours for each trick ski and 12 hours for each slalom ski.

Linear Programming Problem (continued) 3. The feasible set is the set of all points that are possible solutions. In this case, we want to determine the value(s) of x, the number of trick skis and y, the number of slalom skis that will yield the maximum profit. Only certain points are eligible. Those are the points within the common region of intersection of the graphs of the constraining inequalities. Let’s return to the graph of the system of linear inequalities. Notice that the feasible set is the yellow shaded region. Our task is to maximize the profit function P = 5x + 10y by producing x trick skis and y slalom skis, but use only values of x and y that are within the yellow region graphed in the next slide.

The Feasible Set

Maximizing the Profit The profit is given by P = 5x + 10y. The equation k = 5x + 10y represents a line with slope (-1/2). For each point (x, y) on this line, the profit equals k. This is called an constant-profit line. As the profit k increases, the line shifts upward by the amount of increase while remaining parallel to all other constant-profit lines. What we are attempting to do is to find the largest value of k possible. The graph on the next slide shows a few isoprofit lines. The maximum value of profit occurs at a corner point - a point of intersection of two lines.

Constant-profit Lines The exact point of intersection of the two lines is (7.5,12.5). Since x and y must be whole numbers, we round the answer down to (7,12).

Maximizing the Profit (continued) The maximum value of the profit function in this example was at the corner point, (7.5, 12.5), but since we cannot produce a fraction of a ski, we will round down to (7, 12). We cannot exceed the constraints, so we can’t round up. Thus, the manufacturer should produce 7 trick skis and 12 slalom skis to achieve maximum profit. What is the maximum profit? P = 5x + 10y P = 5(7)+10(12) = 35 + 120 = 155.

General Result If a linear programming problem has a solution, it is located at a corner point of the set of feasible solutions. If a linear programming problem has more than one solution, at least one of them is located at a corner point of the set of feasible solutions. If the set of feasible solutions is bounded, as in our example, the solution of the linear programming problem will exist. Bounded means that the region can be enclosed in a circle. If the set of feasible solutions is not bounded, then the solution may or may not exist. Use the graph to determine whether a solution exists or not.

Constructing a Model for a Linear Programming Problems 1. Introduce decision variables. 2. Summarize relevant material in table form, relating columns to the decision variables, if possible. 3. Determine the objective and write a linear objective function. 4. Write problem constraints using linear equations and/or inequalities. 5. Write non-negative constraints.

Geometric Method for Solving Linear Programming Problems 1. Graph the feasible region. Then, if an optimal solution exists, find the coordinates of each corner point. 2. Construct a corner point table listing the value of the objective function at each corner point. 3. Determine the optimal solution(s) from the table in step 2. 4. For an applied problem, interpret the optimal solution(s) in terms of the original problem.

Example 1 Maximize the quantity z = x + 2y subject to the constraints x + y ≥ 1, x ≥ 0, y ≥ 0.

Example 1 (no solution) Maximize the quantity z = x + 2y subject to the constraints x + y ≥ 1, x ≥ 0, y ≥ 0. 1. The objective function is z = x + 2y, which is to be maximized. 2. Graph the constraints: (see next slide) 3. Determine the feasible set (see next slide) 4. Determine the corner points of the feasible set. There are two corner points from our graph: (1,0) and (0,1) 5. Determine the value of the objective function at each vertex. At (1, 0), z = (1) + 2(0) = 1; at (0, 1), z = 0 + 2(1) = 2.

Example 1 (continued) The pink lines are the graphs of z = x + 2y for z = 2, 3 and 4. We can see from the graph there is no feasible point that makes z largest. The region is unbounded. We conclude that this linear programming problem has no solution.

Example 2 A manufacturing plant makes two types of boats, a two-person boat and a four-person boat. Each two-person boat requires 0.9 labor-hours from the cutting department and 0.8 labor-hours from the assembly department. Each four-person boat requires 1.8 labor-hours from the cutting department and 1.2 labor-hours from the assembly department. The maximum labor-hours available per month in the cutting department and the assembly department are 864 and 672, respectively. The company makes a profit of $25 on each two-person boat and $40 on each four-person boat How many boats of each kind should the company produce in order to maximize profit?

Example 2 (unique solution) 1. Write the objective function. 2. Write the problem constraints and the nonnegative constraints. 3. Graph the feasible region. Find the corner points. 4. Test the corner points in the objective function to find the maximum profit. Answers: 1. Objective Function If x is the number of two-person boats and y is the number of four-person boats, and the company makes a profit of $25 on each two-person boat and $40 on each four-person boat, the objective function is P = 25x + 40y.

Example 2 (continued) 2. Constraints Since each 2-person boat requires 0.9 labor hours from the cutting department and each 4-person boat requires 1.8 hour of cutting, and the maximum hours available in the cutting department is 864, we have 0.9x + 1.8y < 864 Since each 2-person boat requires 0.8 labor-hours from assembly and each 4-person requires 1.2 hour from assembly, and the maximum hours available in assembly is 672, we have 0.8x + 1.2y < 672. Also, x > 0 and y > 0.

Example 2 (continued) 3. Feasible region .8x + 1.2y = 672 500 3. Feasible region The yellow shaded area is the feasible region. Corner points are (0, 0), (0, 480), (480, 240), and (840, 0) .9x + 1.8y = 864

25(480) + 40(240) = $21,600 This is max. profit Example 2 (continued) 4. Maximum Profit Corner point Value of P = 25x + 40y (0,0) (0,480) 40(480) = $19,200 (480,240) 25(480) + 40(240) = $21,600 This is max. profit (840,0) 25(840) = $21,000

Example 3 Maximize z = 4x + 2y subject to 2x + y < 20

Example 3 (multiple solution) Maximize z = 4x + 2y subject to 2x + y < 20 10x + y > 36 2x + 5y > 36 x, y > 0 The feasible solution is shaded green. The corner points are (2,16), (8,4) and (3,6). 36 10x+y=36 2x+y=20 2x+5y=36 10 Test corner points: (2,16) z = 4(2) + 2(16) = 40 (8,4) z = 4(8) + 2(4) = 40 (3,6) z = 4(3) + 2(6) = 2 } These are both optimal.

Example 3 (continued) The solution to example 3 is a multiple optimal solution. In general, if two corner points are both optimal solutions to a linear programming problem, then any point on the line segment joining them is also an optimal solution. Thus any point on the line 2x + y = 20, where 2 < x < 8, such as (3, 14), would be an optimal solution.