Index tuning Hash Index. overview Introduction Hash-based indexes are best for equality selections. –Can efficiently support index nested joins –Cannot.

Slides:



Advertisements
Similar presentations
External Memory Hashing. Model of Computation Data stored on disk(s) Minimum transfer unit: a page = b bytes or B records (or block) N records -> N/B.
Advertisements

CS4432: Database Systems II Hash Indexing 1. Hash-Based Indexes Adaptation of main memory hash tables Support equality searches No range searches 2.
Hash-Based Indexes Jianlin Feng School of Software SUN YAT-SEN UNIVERSITY.
Hash-based Indexes CS 186, Spring 2006 Lecture 7 R &G Chapter 11 HASH, x. There is no definition for this word -- nobody knows what hash is. Ambrose Bierce,
1 Hash-Based Indexes Module 4, Lecture 3. 2 Introduction As for any index, 3 alternatives for data entries k* : – Data record with key value k – –Choice.
Hash-Based Indexes The slides for this text are organized into chapters. This lecture covers Chapter 10. Chapter 1: Introduction to Database Systems Chapter.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Hash-Based Indexes Chapter 11.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Hash-Based Indexes Chapter 11.
CPSC 404, Laks V.S. Lakshmanan1 Hash-Based Indexes Chapter 11 Ramakrishnan & Gehrke (Sections )
DBMS 2001Notes 4.2: Hashing1 Principles of Database Management Systems 4.2: Hashing Techniques Pekka Kilpeläinen (after Stanford CS245 slide originals.
Access Methods for Advanced Database Applications.
CS 245Notes 51 CS 245: Database System Principles Hector Garcia-Molina Notes 5: Hashing and More.
Chapter 11 (3 rd Edition) Hash-Based Indexes Xuemin COMP9315: Database Systems Implementation.
Hash Indexes: Chap. 11 CS634 Lecture 6, Feb
ICS 421 Spring 2010 Indexing (2) Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 2/23/20101Lipyeow Lim.
B-trees - Hashing. 11.2Database System Concepts Review: B-trees and B+-trees Multilevel, disk-aware, balanced index methods primary or secondary dense.
1 Hash-Based Indexes Yanlei Diao UMass Amherst Feb 22, 2006 Slides Courtesy of R. Ramakrishnan and J. Gehrke.
B+-tree and Hashing.
B+-tree and Hash Indexes
1 Hash-Based Indexes Chapter Introduction  Hash-based indexes are best for equality selections. Cannot support range searches.  Static and dynamic.
CPSC-608 Database Systems Fall 2010 Instructor: Jianer Chen Office: HRBB 315C Phone: Notes #8.
FALL 2004CENG 3511 Hashing Reference: Chapters: 11,12.
CPSC-608 Database Systems Fall 2011 Instructor: Jianer Chen Office: HRBB 315C Phone: Notes #11.
1 Hash-Based Indexes Chapter Introduction : Hash-based Indexes  Best for equality selections.  Cannot support range searches.  Static and dynamic.
CPSC-608 Database Systems Fall 2008 Instructor: Jianer Chen Office: HRBB 309B Phone: Notes #8.
CS 245Notes 51 CS 245: Database System Principles Hector Garcia-Molina Notes 5: Hashing and More.
CS 4432lecture #10 - indexing & hashing1 CS4432: Database Systems II Lecture #10 Professor Elke A. Rundensteiner.
CS 277 – Spring 2002Notes 51 CS 277: Database System Implementation Arthur Keller Notes 5: Hashing and More.
CS CS4432: Database Systems II. CS Index definition in SQL Create index name on rel (attr) (Check online for index definitions in SQL) Drop.
1 Chapter 12: Indexing and Hashing Indexing Indexing Basic Concepts Basic Concepts Ordered Indices Ordered Indices B+-Tree Index Files B+-Tree Index Files.
Hashing and Hash-Based Index. Selection Queries Yes! Hashing  static hashing  dynamic hashing B+-tree is perfect, but.... to answer a selection query.
CS 245Notes 51 CS 245: Database System Principles Hector Garcia-Molina Notes 5: Hashing and More.
1 Database Systems ( 資料庫系統 ) November 8, 2004 Lecture #9 By Hao-hua Chu ( 朱浩華 )
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Tree- and Hash-Structured Indexes Selected Sections of Chapters 10 & 11.
CS 245Notes 51 CS 245: Database System Principles Hector Garcia-Molina Notes 5: Hashing and More.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Hash-Based Indexes Chapter 11 Modified by Donghui Zhang Jan 30, 2006.
Introduction to Database, Fall 2004/Melikyan1 Hash-Based Indexes Chapter 10.
1.1 CS220 Database Systems Indexing: Hashing Slides courtesy G. Kollios Boston University via UC Berkeley.
Static Hashing (using overflow for collision managment e.g., h(key) mod M h key Primary bucket pages 1 0 M-1 Overflow pages(as separate link list) Overflow.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Indexed Sequential Access Method.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Hash-Based Indexes Chapter 10.
B-Trees, Part 2 Hash-Based Indexes R&G Chapter 10 Lecture 10.
1 Database Systems ( 資料庫系統 ) November 28, 2005 Lecture #9.
Hash-Based Indexes. Introduction uAs for any index, 3 alternatives for data entries k*: w Data record with key value k w w Choice orthogonal to the indexing.
1 Ullman et al. : Database System Principles Notes 5: Hashing and More.
CPSC 8620Notes 61 CPSC 8620: Database Management System Design Notes 6: Hashing and More.
CS 245: Database System Principles
Hash-Based Indexes Chapter 11
Database Management Systems (CS 564)
CS 245: Database System Principles
Introduction to Database Systems
CS222: Principles of Data Management Notes #8 Static Hashing, Extendible Hashing, Linear Hashing Instructor: Chen Li.
Hash-Based Indexes R&G Chapter 10 Lecture 18
Hash-Based Indexes Chapter 10
CS222P: Principles of Data Management Notes #8 Static Hashing, Extendible Hashing, Linear Hashing Instructor: Chen Li.
CS 245: Database System Principles
Hashing.
Hash-Based Indexes Chapter 11
Index tuning Hash Index.
Database Systems (資料庫系統)
LINEAR HASHING E0 261 Jayant Haritsa Computer Science and Automation
Chapter 11: Indexing and Hashing
Index tuning Hash Index.
Database Systems (資料庫系統)
Hash-Based Indexes Chapter 11
Chapter 11 Instructor: Xin Zhang
CS222/CS122C: Principles of Data Management UCI, Fall 2018 Notes #07 Static Hashing, Extendible Hashing, Linear Hashing Instructor: Chen Li.
CS4432: Database Systems II
Index Structures Chapter 13 of GUW September 16, 2019
Presentation transcript:

Index tuning Hash Index

overview

Introduction Hash-based indexes are best for equality selections. –Can efficiently support index nested joins –Cannot support range searches. Static and dynamic hashing techniques exist; trade-offs similar to ISAM vs. B+ trees.

Static Hashing # primary pages fixed, allocated sequentially, never de-allocated; overflow pages if needed. h(k) mod M = bucket to which data entry with key k belongs. (M = # of buckets) Buckets contain data entries. Long overflow chains can develop and degrade performance. Search needs one disk I/O, insert and delete needs two I/Os

Example hash function Key = ‘x 1 x 2 … x n ’ n byte character string Have b buckets h: add x 1 + x 2 + ….. x n – compute sum modulo b Good hash function: –Expected number of keys/bucket is the same for all buckets Read Knuth Vol. 3 if you really need to select a good function.

CS 245Notes 56 Within a bucket: Do we keep keys sorted? Yes, if CPU time critical & Inserts/Deletes not too frequent

Next: example to illustrate inserts, overflows, deletes h(K)

EXAMPLE 2 records/bucket INSERT: h(a) = 1 h(b) = 2 h(c) = 1 h(d) = d a c b h(e) = 1 e

CS 245Notes a b c e d EXAMPLE: deletion Delete: e f f g maybe move “g” up c d

CS 245Notes 510 Rule of thumb: Try to keep space utilization between 50% and 80% Utilization = # keys used total # keys that fit If < 50%, wasting space If > 80%, overflows significant depends on how good hash function is & on # keys/bucket

CS 245Notes 511 How do we cope with overflows? Periodically rehashing: reorganization Dynamic hashing Extensible Linear

Extendible Hashing Situation: Bucket (primary page) becomes full. Why not re-organize file by doubling # of buckets? –Reading and writing all pages is expensive! –Idea: Use directory of pointers to buckets, double # of buckets by doubling the directory, splitting just the bucket that overflowed! Directory much smaller than file, so doubling it is much cheaper. Only one page of data entries is split. –No overflow page! Trick lies in how hash function is adjusted!

Example Directory is array of size 4. To find bucket for r, take last `global depth’ # bits of h(r); we denote r by h(r). –If h(r) = 5 = binary 101, it is in bucket pointed to by 01. Insert: If bucket is full, split it (allocate new page, re- distribute). –If necessary, double the directory. (As we will see, splitting a bucket does not always require doubling; we can tell by comparing global depth with local depth for the split bucket.) –When directory doubled, global depth +1 –When a bucket is split, local depth+1

Insert h(r)=20 (Causes Doubling)

Points to note 20 = binary Last 2 bits (00) tell us r belongs in A or A2. Last 3 bits needed to tell which. –Global depth of directory: Max # of bits needed to tell which bucket an entry belongs to. –Local depth of a bucket: # of bits used to determine if an entry belongs to this bucket. When does bucket split cause directory doubling? –Before insert, local depth of bucket = global depth. Insert causes local depth to become > global depth; directory is doubled by copying it over and `fixing’ pointer to split image page. (Use of least significant bits enables efficient doubling via copying of directory!)

Directory Doubling Why use least significant bits in directory? Allows for doubling via copying!

Comments on extendible hashing If directory fits in memory, equality search answered with one disk access; else two. –100MB file, 100 bytes/rec, 4K page size, which contains 1,000,000 records (as data entries), each page/bucket has about 40 data entries, so there are about 25,000 directory elements; chances are high that directory will fit in memory. Directory grows in spurts, and, if the distribution of hash values is skewed, directory can grow large. Multiple entries with same hash value cause problems!, needs to be handled specially, e.g., overflow page Delete: If removal of data entry makes bucket empty, can be merged with `split image’. If each directory element points to same bucket as its split image, can halve directory.

summarize