Circuit Theory Dr Todd Huffman What is circuit theory? Analysing (electrical) circuits, applying basic rules (Ohm’s law, Kirchoff’s law) to networks of.

Slides:



Advertisements
Similar presentations
Kirchhoff’s Laws.
Advertisements

Instrumentation (AMME2700) 1 Instrumentation Dr. Xiaofeng Wu.
Lecture 7 Circuits Ch. 27 Cartoon -Kirchhoff's Laws Topics –Direct Current Circuits –Kirchhoff's Two Rules –Analysis of Circuits Examples –Ammeter and.
Objective of Lecture Provide step-by-step instructions for nodal analysis, which is a method to calculate node voltages and currents that flow through.
Kirchhoff's Rules Continued
Overview Discuss Test 1 Review RC Circuits
a b  R C I I R  R I I r V Lecture 10, ACT 1 Consider the circuit shown: –What is the relation between V a - V d and V a - V c ? (a) (V a -V d ) < (V.
Fundamentals of Circuits: Direct Current (DC)
The Lead Acid Electric Battery + - Spongy Lead (Pb) Lead Oxide (PbO 2 ) Sulfuric Acid Solution H 2 SO 4 Sulfuric Acid Electrolyte: Oxidation at the Negative.
Physics 1402: Lecture 11 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, solutions.
Lecture 21 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Transient Excitation of First-Order Circuits
Slide 1EE100 Summer 2008Bharathwaj Muthuswamy EE100 Su08 Lecture #2 (June 25 th 2008) For today: –Bart: slight change in office hours: Check website –Student.
Lecture 4 Kirchoff: The Man, The Law, The Field EC 2 Polikar.
12/6/2004EE 42 fall 2004 lecture 401 Lecture #40: Review of circuit concepts This week we will be reviewing the material learned during the course Today:
Pg HUGHES Electrical & Electronic Technology
CP2 Circuit Theory Dr Todd Huffman Aims of this course: Understand basic circuit.
Objective of Lecture Provide step-by-step instructions for mesh analysis, which is a method to calculate voltage drops and mesh currents that flow around.
Chapter 20: Circuits Current and EMF Ohm’s Law and Resistance
Lecture 2 Basic Circuit Laws
CHAPTER-2 NETWORK THEOREMS.
Electrical Circuits Dr. Sarika Khushalani Solanki
Overview of ENGR 220 Circuits 1 Fall 2005 Harding University Jonathan White.
Active Analogue Circuits Year 2 B. Todd Huffman. CP2 Circuit Theory Revision Lecture Basics, Kirchoff’s laws, Thevenin and Norton’s theorem, Capacitors,
Electric Circuits AP Physics B.
1 ECE 3336 Introduction to Circuits & Electronics Note Set #2 Circuit Elements, Ohm’s Law, Kirchhoff’s Laws Spring 2015, TUE&TH 5:30-7:00 pm Dr. Wanda.
Objective of Lecture Provide step-by-step instructions for mesh analysis, which is a method to calculate voltage drops and mesh currents that flow around.
Passive components and circuits - CCP Lecture 3 Introduction.
a b  R C I I R  R I I r V Yesterday Ohm’s Law V=IR Ohm’s law isn’t a true law but a good approximation for typical electrical circuit materials Resistivity.
Circuit Basics Direct Current (DC) Circuits 1.5 V + – wire open switch closed switch 2-way switch ideal battery capacitor resistor 47  F 4.7 k  These.
EMLAB 1 기초 회로 이론 EMLAB 2 Contents 1.Basic concepts 2.Resistive circuits 3.Nodal and loop analysis techniques 4.Operational amplifiers 5.Additional.
Simple Circuits & Kirchoff’s Rules Parallel CircuitSeries Circuit.
10/9/20151 General Physics (PHY 2140) Lecture 10  Electrodynamics Direct current circuits parallel and series connections Kirchhoff’s rules Chapter 18.
1 ENGG 1015 Tutorial Circuit Analysis 5 Nov Learning Objectives  Analysis circuits through circuit laws (Ohm’s Law, KCL and KVL) News  HW1 deadline (5.
ENGR. VIKRAM KUMAR B.E (ELECTRONICS) M.E (ELECTRONICS SYSTEM ENGG:) MUET JAMSHORO 1 KIRCHHOFF’S VOLTAGE LAW.
ECE 4991 Electrical and Electronic Circuits Chapter 4.
Chapter 19 DC Circuits. Objective of the Lecture Explain Kirchhoff’s Current and Voltage Laws. Demonstrate how these laws can be used to find currents.
ECE 4991 Electrical and Electronic Circuits Chapter 2
Chapter 28 Direct Current Circuits. Introduction In this chapter we will look at simple circuits powered by devices that create a constant potential difference.
ELECTRIC CURRENT 2 Ohm’s law shows the relationship between current, potential, and voltage. We need a few more rules to make predictions about current.
Physics 1202: Lecture 8 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, solutions.
1 ECE 3144 Lecture 12 Dr. Rose Q. Hu Electrical and Computer Engineering Department Mississippi State University.
Fundamentals of Electric Circuits
Engineering 1333: Electrical Circuits 9/16/20059/12/2007Kirchoff Laws1 Topic 4 The Kirchhoff Laws (Sections 2.3 & 2.4)
Objective of Lecture Provide step-by-step instructions for nodal analysis, which is a method to calculate node voltages and currents that flow through.
Active Analogue Circuits Year 2 B. Todd Huffman. Circuit Theory Reminders Basics, Kirchoff’s laws, Thevenin and Norton’s theorem, Capacitors, Inductors.
1 Summary of Circuits Theory. 2 Voltage and Current Sources Ideal Voltage Source It provides an output voltage v s which is independent of the current.
ECE 4991 Electrical and Electronic Circuits Chapter 3.
EEE1012 Introduction to Electrical & Electronics Engineering Chapter 2: Circuit Analysis Techniques by Muhazam Mustapha, July 2010.
ENGR-43_Lec-02-2b_KVL.ppt 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer, PE Licensed Electrical &
1 §18.1 Electric Current e-e- e-e- e-e- e-e- e-e- e-e- e-e- e-e- A metal wire. Assume electrons flow to the right. Current is a measure of the amount of.
DC Circuits March 1, Power Source in a Circuit V The ideal battery does work on charges moving them (inside) from a lower potential to one that.
Chapter 25 : Electric circuits
Properties of Current Current must flow in a complete circuit - current cannot be “lost” anywhere. Kirchoff’s point rule - the current flowing into any.
SCHOOL OF ENGINEERING Introduction to Electrical and Electronic Engineering Part 2 Pr. Nazim Mir-Nasiri and Pr. Alexander Ruderman.
ECE 4991 Electrical and Electronic Circuits Chapter 4
기초 회로 이론
Nodal Analysis.
Power Circuit By: AAA.
CP2 Circuit Theory Aims of this course:
Nodal Analysis.
Current Directions and
WELCOME TO PHYSICS PROJECT.
Kirchoff’s Laws.
Capacitors +Q Capacitors store charge E d + –Q – Q=CV
Kirchoff’s Laws.
Nodal and Mesh Analysis
Basics of Electronic Circuits
Kirchhoff’s Laws.
Kirchhoff’s Laws.
Presentation transcript:

Circuit Theory Dr Todd Huffman What is circuit theory? Analysing (electrical) circuits, applying basic rules (Ohm’s law, Kirchoff’s law) to networks of components, to calculate the current and voltage at any point + – + +

To do this: You need to know the basic rules. – Ohm’s Law – Current law (Conservation of Charge) – Voltage law (Conservation of Energy) And you need to know the techniques – Mesh analysis – Node analysis And I need to show you some tricks And You need to practice, as with any skill.

Reading List Electronics: Circuits, Amplifiers and Gates, D V Bugg, Taylor and Francis Chapters 1-7 Basic Electronics for Scientists and Engineers, D L Eggleston, CUP Chapters 1,2,6 Electromagnetism Principles and Applications, Lorrain and Corson, Freeman Chapters 5,16,17,18 Practical Course Electronics Manual Chapters 1-3 (Very Good one to read!) Elementary Linear Circuit Analysis, L S Bobrow, HRW Chapters 1-6 The Art of Electronics, Horowitz and Hill, CUP

Ohm’s law Voltage difference  current I L A V R=Resistance Ω[ohms] Resistor symbols: R

Other Circuit Symbols I0I0 V0V0 Ground – Reference Potential V ≡ Zero volts (by definition) Passive Devices Sources of Electrical Power Direction of Current or +/- Terminals must be shown. or Capacitor Inductor

Passive Sign Convention Passive devices ONLY - Learn it; Live it; Love it! R=Resistance Ω[ohms] Which way does the current flow, left or right? Three deceptively Simple questions: Voltage has a ‘+’ side and a ‘-’ side (you can see it on a battery) on which side should we put the ‘+’? On the left or the right? Given V=IR, does it matter which sides for V or which direction for I? Explain on white board – Trick

Kirchoff’s Laws I Kirchoff’s current law: Sum of all currents at a node is zero I1I1 I3I3 I2I2 I4I4 I 1 +I 2 –I 3 –I 4 =0 (conservation of charge) Passive Sign Convention: If you follow it, you can arbitrarily choose whether “incoming” or “outgoing” currents are Positive at each node independently from all other nodes!

II Kirchoff’s voltage law:Around a closed loop the net change of potential is zero V0V0 I R1R1 R2R2 R3R3 -V 0 +IR 1 +IR 2 +IR 3 =0 5V 3kΩ 4kΩ Calculate the voltage across R 2 5V=I(1+3+4)kΩ V R2 =62.5mA×3kΩ=1.9V 1kΩ Passive Sign Convention really helps!!! Notice “I”

R 1 =1kΩ R 2 =2kΩ R 3 =4kΩ 10V + R1R1 R3R3 R2R2 VX?VX? Let us use these rules to find V x. I1I1 I2I2 This technique is called “mesh analysis”. Start by labelling currents and using KVL. Then apply KCL at nodes. If you then use Passive Sign Convention, the direction you chose for the currents DOES NOT MATTER! Solve example on white board +

10V + R1R1 R3R3 R2R2 R 1 =6kΩ R 2 =2kΩ R 3 =0.5kΩ R 4 =2kΩ VX?VX? R4R4 10mA OK…So which is the “right” direction for V x now? You might think, up to now, that Passive Sign convention is a bit silly. What if we had a circuit with 5 loops and an additional current source? Let’s solve the above circuit and find out what V x is.

Node Analysis Instead of currents around loops – voltages at nodes 1.Choose one node as a “ground”. The reference 2.Now label all nodes with a voltage. This is positive wrt ground. 3.Now at each node (that isn’t ground) use KCL There are Tricks you can use IF you use passive sign convention at each node!

Capacitors + ++ – – – Q=CV Capacitors are also PASSIVE – They too have a kind of “ohm’s law” that relates voltage and current. Unit – “Farad” C =  A/d

RC circuits + V0V0 R C 1 2 Initially V R =0 V C =0 1 Switch in Position “1” for a long time. Then instantly flips at time t = 0. Capacitor has a derivative! How do we analyze this? There are some tricks… 1.) What does the Circuit do up until the switch flips? (Switch has been at pos. 1 for a VERY long time. easy) 2). What does the circuit do a VERY long time AFTER the switch flips? (easy) 3). What can we say about the INSTANT after switch flips? (easy if you know trick) I + + ALWAYS start by asking these three questions:

The Trick!!

RC circuits + V0V0 R C 1 2 Initially at t = 0 - V R =0 V C =0 I=0 1 2 differentiate wrt t Then at t = 0 + Must be that V C =0 If V C =0 then KVL says V R =V 0 and I=V 0 /R. Capacitor is acting like a short-circuit. Finally at t = +∞ V R =0 V C =V 0 I=0 I

+ V0V0 R

9V + R1R1 R2R2 V X (t)? C a)R 1 =R 2 b)R 1 =2R 2 Switch Closes at time t=0. What is the voltage V X as a function of time? Work it out with student’s help.

Inductance I for solenoid Unit – “Henry” Inductors are also PASSIVE – They too have a kind of “ohm’s law” that relates voltage and current. How should the inductor’s voltage be labelled in the above diagram? L

RL circuits + V0V0 R L 1 2 Initially t=0 - V R =V 0 V L =0 I=V 0 /R 20R 1.) What does the Circuit do up until the switch flips? (Switch has been at pos. 2 for a VERY long time. easy) 2). What does the circuit do a VERY long time AFTER the switch flips? (easy) 3). What can we say about the INSTANT the switch flips? (easy if you know trick) I This one is going to be fun, I promise!

RL circuits + V0V0 R L 1 2 Initially t=0 - V R =V 0 V L =0 I=V 0 /R 20R I And at t=∞ (Pos. “1”) V R =0 V L =0 I=0 What about at t=0 + ? A TRICK! + + +

The Next Trick!!

RL circuits + V0V0 R L R Initially t=0 - V R =V 0 V L =0 I=V 0 /R And at t=∞ (Pos. “1”) V R =0 V L =0 I=0 At t=0 +  Current in L MUST be the same I=V 0 /R So… V R =V 0 V R20 =20V 0 and V L = -21V 0 !!! I For times t > 0

+ V0V0 R L Notice Difference in Scale!

+ V0V0 R2R2 R1R1 L I2I2 t<0 switch closed I 2 =? t=0 switch opened t>0 I 2 (t)=? voltage across R 1 =? Write this problem down and DO attempt it at home

+ V0V0 LC circuit C LI=I 0 for t=0 Return to white board Position t=0 +

Initial conditions? I(0)=I 0 = ?

LCR circuit + V0V0 R C L V(t) I(t)=0 for t<0

R=6Ω L=1H C=0.2F Initial conditions? I(0)

LCR circuit

t