Thermalization Algorithms: Digital vs Analogue Fernando G.S.L. Brandão University College London Joint work with Michael Kastoryano Freie Universität Berlin.

Slides:



Advertisements
Similar presentations
Henry Haselgrove School of Physical Sciences University of Queensland
Advertisements

Slow and Fast Mixing of Tempering and Swapping for the Potts Model Nayantara Bhatnagar, UC Berkeley Dana Randall, Georgia Tech.
Local Hamiltonians in Quantum Computation Funding: Slovak Research and Development Agency, contract No. APVV , European Project QAP 2004-IST- FETPI-15848,
Sergey Bravyi, IBM Watson Center Robert Raussendorf, Perimeter Institute Perugia July 16, 2007 Exactly solvable models of statistical physics: applications.
APRIL 2010 AARHUS UNIVERSITY Simulation of probed quantum many body systems.
Equilibration and Unitary k- Designs Fernando G.S.L. Brandão UCL Joint work with Aram Harrow and Michal Horodecki arXiv: IMS, September 2013.
THE ISING PHASE IN THE J1-J2 MODEL Valeria Lante and Alberto Parola.
Spin chains and channels with memory Martin Plenio (a) & Shashank Virmani (a,b) quant-ph/ , to appear prl (a)Institute for Mathematical Sciences.
1 The Monte Carlo method. 2 (0,0) (1,1) (-1,-1) (-1,1) (1,-1) 1 Z= 1 If  X 2 +Y 2  1 0 o/w (X,Y) is a point chosen uniformly at random in a 2  2 square.
Boris Altshuler Columbia University Anderson Localization against Adiabatic Quantum Computation Hari Krovi, Jérémie Roland NEC Laboratories America.
Lecture 3: Markov processes, master equation
CS774. Markov Random Field : Theory and Application Lecture 04 Kyomin Jung KAIST Sep
CS774. Markov Random Field : Theory and Application Lecture 16 Kyomin Jung KAIST Nov
1 Quantum Monte Carlo Methods Jian-Sheng Wang Dept of Computational Science, National University of Singapore.
Complexity of simulating quantum systems on classical computers Barbara Terhal IBM Research.
Computational statistics 2009 Random walk. Computational statistics 2009 Random walk with absorbing barrier.
The Markov property Discrete time: A time symmetric version: A more general version: Let A be a set of indices >k, B a set of indices
Entanglement in Quantum Critical Phenomena, Holography and Gravity Dmitri V. Fursaev Joint Institute for Nuclear Research Dubna, RUSSIA Banff, July 31,
1 Cluster Monte Carlo Algorithms & softening of first-order transition by disorder TIAN Liang.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Entanglement Renormalization Frontiers in Quantum Nanoscience A Sir Mark Oliphant & PITP Conference Noosa, January 2006 Guifre Vidal The University of.
Area Laws for Entanglement Fernando G.S.L. Brandão University College London joint work with Michal Horodecki arXiv: arXiv:1406.XXXX Stanford.
Introduction to Monte Carlo Methods D.J.C. Mackay.
6. Markov Chain. State Space The state space is the set of values a random variable X can take. E.g.: integer 1 to 6 in a dice experiment, or the locations.
Classical and Quantum Monte Carlo Methods Or: Why we know as little as we do about interacting fermions Erez Berg Student/Postdoc Journal Club, Oct
Entanglement Area Law (from Heat Capacity)
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
Entangling without Entanglement T. Cubitt, F. Verstraete, W. Dür, J. I. Cirac “Separable State can be used to Distribute Entanglement” (to appear in PRL.
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
Quantum Gibbs Samplers
Thermalization and Quantum Information Fernando G.S.L. Brandão University College London New Perspectives on Thermalization, Aspen 2014 partially based.
Merlin-Arthur Games and Stoquastic Hamiltonians B.M. Terhal, IBM Research based on work with Bravyi, Bessen, DiVincenzo & Oliveira. quant-ph/ &
The Ising Model Mathematical Biology Lecture 5 James A. Glazier (Partially Based on Koonin and Meredith, Computational Physics, Chapter 8)
Two Temperature Non-equilibrium Ising Model in 1D Nick Borchers.
Markov Random Fields Probabilistic Models for Images
Quantum Gibbs Samplers Fernando G.S.L. Brandão QuArC, Microsoft Research Based on joint work with Michael Kastoryano University of Copenhagen Quantum Hamiltonian.
Barriers in Hamiltonian Complexity Umesh V. Vazirani U.C. Berkeley.
1 Dorit Aharonov Hebrew Univ. & UC Berkeley Adiabatic Quantum Computation.
Tensor networks and the numerical study of quantum and classical systems on infinite lattices Román Orús School of Physical Sciences, The University of.
A Monomial matrix formalism to describe quantum many-body states Maarten Van den Nest Max Planck Institute for Quantum Optics Montreal, October 19 th 2011.
A simple nearest-neighbour two-body Hamiltonian system for which the ground state is a universal resource for quantum computation Stephen Bartlett Terry.
13. Extended Ensemble Methods. Slow Dynamics at First- Order Phase Transition At first-order phase transition, the longest time scale is controlled by.
7. Metropolis Algorithm. Markov Chain and Monte Carlo Markov chain theory describes a particularly simple type of stochastic processes. Given a transition.
The Markov Chain Monte Carlo Method Isabelle Stanton May 8, 2008 Theory Lunch.
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
DYNAMICS OF OPEN Q-SYSTES FROM A PERSPECTIVE OF QIT IMS, Imperial College, London, 18 January 2007 Vladimír Bužek Research Center for Quantum Information.
Javier Junquera Importance sampling Monte Carlo. Cambridge University Press, Cambridge, 2002 ISBN Bibliography.
Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications.
ECE-7000: Nonlinear Dynamical Systems 2. Linear tools and general considerations 2.1 Stationarity and sampling - In principle, the more a scientific measurement.
Date: 2005/4/25 Advisor: Sy-Yen Kuo Speaker: Szu-Chi Wang.
Spatial decay of correlations and efficient methods for computing partition functions. David Gamarnik Joint work with Antar Bandyopadhyay (U of Chalmers),
Non classical correlations of two interacting qubits coupled to independent reservoirs R. Migliore CNR-INFM, Research Unit CNISM of Palermo Dipartimento.
CS Statistical Machine learning Lecture 25 Yuan (Alan) Qi Purdue CS Nov
The Poincaré Constant of a Random Walk in High- Dimensional Convex Bodies Ivona Bezáková Thesis Advisor: Prof. Eric Vigoda.
KITPC Max Planck Institut of Quantum Optics (Garching) Tensor networks for dynamical observables in 1D systems Mari-Carmen Bañuls.
Monte Carlo Simulation of Canonical Distribution The idea is to generate states i,j,… by a stochastic process such that the probability  (i) of state.
Computational Physics (Lecture 10) PHY4370. Simulation Details To simulate Ising models First step is to choose a lattice. For example, we can us SC,
Quantum Boltzmann Machine
On the spectrum of Hamiltonians in finite dimensions Roberto Oliveira Paraty, August 14 th Joint with David DiVincenzo and Barbara IBM Watson.
Quantum Approximate Markov Chains and the Locality of Entanglement Spectrum Fernando G.S.L. Brandão Caltech Seefeld 2016 based on joint work with Kohtaro.
Fernando G.S.L. Brandão MSR -> Caltech Faculty Summit 2016
Biointelligence Laboratory, Seoul National University
Computational Physics (Lecture 10)
Advanced Statistical Computing Fall 2016
Fernando G.S.L. Brandão Microsoft Research MIT 2016
Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband.
Phase Transitions In Reconstruction Yuval Peres, U.C. Berkeley
3rd Lecture: QMA & The local Hamiltonian problem (CNT’D)
Summarizing Data by Statistics
Opinionated Lessons #39 MCMC and Gibbs Sampling in Statistics
Presentation transcript:

Thermalization Algorithms: Digital vs Analogue Fernando G.S.L. Brandão University College London Joint work with Michael Kastoryano Freie Universität Berlin Discrete and analogue Quantum Simulators, Bad Honnef 2014

Dynamical Properties H ij Hamiltonian: State at time t: Expectation values: Temporal correlations:

Quantum Simulators, Dynamical Digital: Quantum Computer Can simulate the dynamics of every multi-particle quantum system (spin models, fermionic and bosonic models, topological quantum field theory, ϕ 4 quantum field theory, …) Analog: Optical Lattices, Ion Traps, Circuit cQED, Linear Optics, … Can simulate the dynamics of particular models (Bose-Hubbard, spin models, BEC-BCS, dissipative dynamics, quenched dynamics, …)

Static Properties

Hamiltonian: Static Properties H ij

Hamiltonian: Groundstate: Thermal state: Compute: local expectation values (e.g. magnetization), correlation functions (e.g. ), … Static Properties H ij

Static Properties Can we prepare groundstates? Warning: In general it’s impossible to prepare groundstates efficiently, even of one-dimensional translational-invariant models -- it’s a computational-hard problem (Gottesman-Irani ‘09)

Static Properties Can we prepare groundstates? Warning: In general it’s impossible to prepare groundstates efficiently, even of one-dimensional translational-invariant models -- it’s a computational-hard problem Analogue: adiabatic evolution; works if Δ ≥ n -c Digital: Phase estimation*; works if can find a “simple” state |0> such that * (Gottesman-Irani ‘09) (Abrams, Lloyd ‘99) H(s i ) ψ i H(s)ψ s = E 0,s ψ s Δ := min Δ(s) H(s) ψ s H(s f )

Static Properties Can we prepare thermal states? Why not? Couple to a bath of the right temperature and wait. But size of environment might be huge. Maybe not efficient (Terhal and diVincenzo ’00, …) S B

Static Properties Can we prepare thermal states? Why not? Couple to a bath of the right temperature and wait. But size of environment might be huge. Maybe not efficient (Terhal and diVincenzo ’00, …) S B Warning: In general it’s impossible to prepare thermal states efficiently, even at constant temperature and of classical models, but defined on general graphs Warning 2: Spin glasses not expected to thermalize. ( PCP Theorem, Arora et al ‘98)

Static Properties Can we prepare thermal states? Why not? Couple to a bath of the right temperature and wait. But size of environment might be huge. Maybe not efficient (Terhal and diVincenzo ’00, …) S B Warning: In general it’s impossible to prepare thermal states efficiently, even at constant temperature and of classical models, but defined on general graphs Warning 2: Spin glasses not expected to thermalize. ( PCP Theorem, Arora et al ‘98) When can we prepare thermal states efficiently? Digital vs analogue methods?

Summary 1. Glauber Dynamics and Metropolis Sampling - Temporal vs Spatial Mixing 2. Quantum Master Equations (Davies Maps) 3. Quantum Metropolis Sampling 4. “Damped” Davies Maps - Lieb-Robinson Bounds 5. Convergence Time of “Damped” Davies Maps - Quantum Generalization of “Temporal vs Spatial Mixing” - 1D Systems

Metropolis Sampling Consider e.g. Ising model: Coupling to bath modeled by stochastic map Q The stationary state is the thermal (Gibbs) state: Metropolis Update: i j

Metropolis Sampling Consider e.g. Ising model: Coupling to bath modeled by stochastic map Q The stationary state is the thermal (Gibbs) state: Metropolis Update: (Metropolis et al ’53) “We devised a general method to calculate the properties of any substance comprising individual molecules with classical statistics” Example of Markov Chain Monte Carlo method. Extremely useful algorithmic technique i j

Glauber Dynamics Metropolis Sampling is an example of Glauber dynamics: Markov chains (discrete or continuous) on the space of configurations {0, 1} n that have the Gibbs state as the stationary distribution: transition matrix after t time steps E.g. for Metropolis, stationary distribution

Temporal Mixing eigenvalues eigenprojectors Convergence time given by the gap Δ = 1- λ 1 : Time of equilibration ≈ n/Δ We have fast temporal mixing if Δ = n -c

Spatial Mixing Let be the Gibbs state for a model in the lattice V with boundary conditions τ, i.e. blue: V, red: boundary Ex. τ = (0, … 0)

Spatial Mixing Let be the Gibbs state for a model in the lattice V with boundary conditions τ, i.e. blue: V, red: boundary Ex. τ = (0, … 0) def: The Gibbs state has correlation length ξ if for every f, g f g

Temporal Mixing vs Spatial Mixing (Stroock, Zergalinski ’92; Martinelli, Olivieri ’94, …) For every 1D and 2D model, Gibbs state has constant correlation length if, and only, if the Glauber dynamics has a constant gap constant: independent of the system size Obs1: Same is true in any fixed dimension using a stronger notion of clustering (weak clustering vs strong clustering)

Temporal Mixing vs Spatial Mixing (Stroock, Zergalinski ’92; Martinelli, Olivieri ’94, …) For every 1D and 2D model, Gibbs state has constant correlation length if, and only, if the Glauber dynamics has a constant gap constant: independent of the system size Obs1: Same is true in any fixed dimension using a stronger notion of clustering (weak clustering vs strong clustering) Obs2: Same is true for the log-Sobolev constant of the system

Temporal Mixing vs Spatial Mixing (Stroock, Zergalinski ’92; Martinelli, Olivieri ’94, …) For every 1D and 2D model, Gibbs state has constant correlation length if, and only, if the Glauber dynamics has a constant gap constant: independent of the system size Obs1: Same is true in any fixed dimension using a stronger notion of clustering (weak clustering vs strong clustering) Obs2: Same is true for the log-Sobolev constant of the system Obs3: For many models, when correlation length diverges, gap is exponentially small in the system size (e.g. Ising model)

Temporal Mixing vs Spatial Mixing (Stroock, Zergalinski ’92; Martinelli, Olivieri ’94, …) For every 1D and 2D model, Gibbs state has constant correlation length if, and only, if the Glauber dynamics has a constant gap constant: independent of the system size Obs1: Same is true in any fixed dimension using a stronger notion of clustering (weak clustering vs strong clustering) Obs2: Same is true for the log-Sobolev constant of the system Obs3: For many models, when correlation length diverges, gap is exponentially small in the system size (e.g. Ising model) Obs4: Any model in 1D, and any model in arbitrary dim. at high enough temperature, has a finite correlation length (connected to uniqueness of the phase, e.g. Dobrushin’s condition)

Temporal Mixing vs Spatial Mixing (Stroock, Zergalinski ’92; Martinelli, Olivieri ’94, …) For every 1D and 2D model, Gibbs state has constant correlation length if, and only, if the Glauber dynamics has a constant gap constant: independent of the system size Obs1: Same is true in any fixed dimension using a stronger notion of clustering (weak clustering vs strong clustering) Obs2: Same is true for the log-Sobolev constant of the system Obs3: For many models, when correlation length diverges, gap is exponentially small in the system size (e.g. Ising model below critical β) Obs4: Any model in 1D, and any model in arbitrary dim. at high enough temperature, has a finite correlation length (connected to uniqueness of the phase, e.g. Dobrushin’s condition) Does something similar hold in the quantum case? 1 st step: Need a quantum version of Glauber dynamics…

Lindblad Equation: (most general Markovian and time homogeneous q. master equation) Quantum Master Equations Canonical example: cavity QED

Lindblad Equation: (most general Markovian and time homogeneous q. master equation) Quantum Master Equations completely positive trace-preserving map: fixed point: How fast does it converge? Determined by gap of of Lindbladian Canonical example: cavity QED

Lindblad Equation: Quantum Master Equations Canonical example: cavity QED Local master equations: L is k-local if all A i act on at most k sites (Kliesch et al ‘11) Time evolution of every k-local Lindbladian on n qubits can be simulated in time poly(n, 2^k) in the circuit model AiAi

Dissipative Quantum Engineering Define a master equation whose fixed point is a desired quantum state (Verstraete, Wolf, Cirac ‘09) Universal quantum computation with local Lindbladian (Diehl et al ’09, Kraus et al ‘09) Dissipative preparation of entangled states (Barreiro et al ‘11) Experiment on 5 trapped ions (prepared GHZ state) Is there a master equation preparing thermal states of many-body Hamiltonians? …

Davies Maps Lindbladian: Lindblad terms: : spectral density

Davies Maps Lindbladian: Lindblad terms: H ij S α (X α, Y α, Z α ) : spectral density Thermal state is the unique fixed point: (satisfies q. detailed balance: )

Davies Maps (Davies ‘74) Rigorous derivation in the weak-coupling limit: Coarse grain over time t ≈ λ -2 >> max(1/ (E i – E j + E k - E l )) (E i : eigenvalues of H) Interacting Ham.

Davies Maps (Davies ‘74) Rigorous derivation in the weak-coupling limit: Coarse grain over time t ≈ λ -2 >> max(1/ (E i – E j + E k - E l )) (E i : eigenvalues of H) But: for n spin Hamiltonain H: max(1/ (E i – E j + E k - E l )) = exp(O(n)) Consequence: S α (ω) are non-local (act on n qubits); cannot be efficiently simulated in the circuit model (but for commuting Hamiltonian, it is local) Interacting Ham. O(n) Energy density O(n 1/2 )

Davies Maps (Davies ‘74) Rigorous derivation in the weak-coupling limit: Coarse grain over time t ≈ λ -2 >> max(1/ (E i – E j + E k - E l )) (E i : eigenvalues of H) But: for n spin Hamiltonain H: max(1/ (E i – E j + E k - E l )) = exp(O(n)) Consequence: S α (ω) are non-local (act on n qubits); cannot be efficiently simulated in the circuit model (but for commuting Hamiltonian, it is local) Interacting Ham. O(n) Energy density O(n 1/2 ) Can we find a local master equation that prepares ρ β ? Can we at least find a quantum channel (tpcp map) that can be efficiently implemented on a quantum computer whose fixed point is ρ β ?

Digital: Quantum Metropolis Sampling (Temme, Osborne, Vollbrecht, Poulin, Verstraete ‘09) Classical Metropolis:

Digital: Quantum Metropolis Sampling (Temme, Osborne, Vollbrecht, Poulin, Verstraete ‘09) Classical Metropolis: Quantum Metropolis: random U 1.Prepare (phase estimation) 2. 3.Make the move with prob. (non trivial; done by Marriott-Watrous trick) Gives map Λ s.t.

Digital: Quantum Metropolis Sampling (Temme, Osborne, Vollbrecht, Poulin, Verstraete ‘09) Classical Metropolis: Quantum Metropolis: random U 1.Prepare (phase estimation) 2. 3.Make the move with prob. (non trivial; done by Marriott-Watrous trick) Gives map Λ s.t. What’s the convergence time? I.e. minimum k s.t. Seems a hard question! k

Davies Maps Lindbladian: Lindblad terms:

Analogue: “Damped” Davies Maps Lindbladian: Lindblad terms:

Analogue: “Damped” Davies Maps Lindbladian: Lindblad terms: Thermal state is the unique fixed point: (satisfies q. detailed balance: follows from: ) What is the locality of this Lindbladian?

Lieb-Robinson Bound In non-relativistic quantum mechanics there is no strict speed of light limit. But there is an approximate version (Lieb-Robinson ‘72) For local Hamiltonian H H ij X Z

Lieb-Robinson Bound II (another formulation) For local Hamiltonian H l l

Lieb-Robinson Bound II (another formulation) For local Hamiltonian H time l l

Applying Lieb-Robinson Bound to “Damped” Davies Maps Consider: fact: proof: LR bound Damping term

has the Gibbs state as its fixed point (up to error 1/poly(n)) and is O(log d (n))-locality for a Hamiltonian on a d-dimensional lattice. Can be simulated on a quantum computer in time exp(O(log d (n))) “Damped” Davies Maps are Approximately Local Define fact:

acts trivially on A acts trivially on B Mixing in Space vs Mixing in Time thm If for every regions A and B and f acting on then, for t = O( 2 O(l) 2 O(ξ) n), l = O(log(n/ε)) AB Obs: Converse holds true for commuting Hamiltonians A C : complement of A (yellow + blue) B C : complement of B (ref + blue)

Convergence Time in 1D Def ρ β has correlation length ξ if for every f, g f g

Convergence Time in 1D Def ρ β has correlation length ξ if for every f, g f g Cor For a 1D Hamiltonian, ρ β has correlation length ξ, then for t = O( 2 O(l) 2 O(ξ) n), l = O(log(n/ε))

Convergence Time in 1D Def ρ β has correlation length ξ if for every f, g f g Cor For a 1D Hamiltonian, ρ β has correlation length ξ, then for t = O( 2 O(l) 2 O(ξ) n), l = O(log(n/ε)) thm (Araki ‘69) For every 1D Hamiltonian, ρ β has ξ = O(β) Thus: Can prepare 1D Gibbs states in time poly(2 β, n) No phase trans. in 1D

Conditional Expectation Let L l *A be the A sub-Lindbladian in Heisenberg picture Note:, Conditional Expectation: fact: proof: commutes with all and thus with all

Conditional Covariance and Variance For a region C: Ex. If C is the entire lattice, Conditional Covariance Conditional Variance

acts trivially on A acts trivially on B Mixing in Space vs Mixing in Time thm If for every regions A and B and f acting on then, for t = O( 2 O(l) 2 O(ξ) n), l = O(log(n/ε)) AB

acts trivially on A acts trivially on B Mixing in Space vs Mixing in Time thm If for every regions A and B and f acting on then, for t = O( 2 O(l) 2 O(ξ) n), l = O(log(n/ε)) AB A C : complement of A (yellow + blue) B C : complement of B (ref + blue)

Proof Idea The relevant gap is (Kastoryano, Temme ‘11, …) We show that under the clustering condition: AB Getting: V : entire lattice V 0 : sublattice of size O(lξ)

Conclusions and Open Questions “Davies like” master equations + Lieb-Robinson bound give interesting approach for preparing thermal states efficiently. Connections between clustering properties of the thermal states (mixing in space) and fast convergence of the master equation (mixing in time), also in the quantum case.

Conclusions and Open Questions “Davies like” master equations + Lieb-Robinson bound give interesting approach for preparing thermal states efficiently. Connections between clustering properties of the thermal states (mixing in space) and fast convergence of the master equation (mixing in time), also in the quantum case. Open questions: Can we get O(log(n))-local Gibbs sampler in any dimension? (true in 2D if can improve Lieb-Robinson bound to Gaussian decay). How about really local samplers? Connected to stability question of “Damped Davies” maps. Can we prove in generality equivalence of spatial mixing vs temporal mixing? How about in 2D? (how to fix the boundary in the q. case?) What are the implications to self-correcting quantum memories? (Fannes, Werner ‘95)