Lecture 4: Georeferencing

Slides:



Advertisements
Similar presentations
Where on Earth are we?.
Advertisements

6 Cartographic Elements
Geographical Information Systems and Science Longley P A, Goodchild M F, Maguire D J, Rhind D W (2001) John Wiley and Sons Ltd 4. Georeferencing © John.
Working with Map Projections
A guide to coordinate systems, datums, projections, and geoids.
Portraying Earth Data types File types
Map Projections Introduction © 2005, Austin Troy.
GPS for Fire Management
Map Projections and Georeferencing
Geografiske informasjonssystemer (GIS) SGO1910 & SGO4930 Vår 2004 Foreleser: Karen O’Brien Seminarleder: Gunnar Berglund
Map Projections (2/2) Francisco Olivera, Ph.D., P.E. Center for Research in Water Resources University of Texas at Austin.
Map Projections & Coordinate Systems
Applied Cartography and Introduction to GIS GEOG 2017 EL
WFM 6202: Remote Sensing and GIS in Water Management © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM 6202: Remote Sensing and GIS in Water Management Akm.
5. Georeferencing.
CS 128/ES Lecture 2b1 Coordinate systems & projections.
Geog 458: Map Sources and Error January 18, 2006 Georeferencing.
Map projections CS 128/ES Lecture 3a.
Modern Navigation Thomas Herring
Geographic Information Systems
Harry Williams, Cartography
Intro. To GIS Pre-lab 2 February 11 th, Geographic Coordinates Geographic coordinates are the earth's latitude and longitude system, ranging from.
Overview Ellipsoid Spheroid Geoid Datum Projection Coordinate System.
Concept of Map Projection Presented by Reza Wahadj University of California,San Diego (UCSD)
Concept of Map Projection. Map Projection A map projection is a set of rules for transforming features from the three- dimensional earth onto a two-dimensional.
Geodesy, Map Projections and Coordinate Systems
United Arab Emirates University College of Humanities and Social Sciences Geographic Info. Systems (1) CHAPTER 4.
GEOREFERENCING SYSTEMS
Geographic Information Systems Coordinate Systems.
Geographic Information Systems (GIS) SGO1910 & SGO4930 Fall 2005.
CORSE '07 Spatial Data Spatial data comes in many forms. So How does a GIS work with the data so that it can put the data in the right place on a map?
Harry Williams, Cartography
Cartography: the science of map making
shops/gis/docs/projections.ppt.
Geodesy and Map Projections Geodesy - the shape of the earth and definition of earth datums Map Projection - the transformation of a curved earth to a.
There are many Londons, for example, besides the largest and most prominent one in the UK. People living in other Londons must often add more information.
GEOREFERENCING By Okan Fıstıkoğlu. GEOGRAPHIC COORDINATE SYSTEMS Geographic Coordinate System (GCS) uses a three dimensional spherical surface to define.
Map Projections RG 620 Week 5 May 08, 2013 Institute of Space Technology, Karachi RG 620 Week 5 May 08, 2013 Institute of Space Technology, Karachi.
Cartography: the science of map making A Round World in Plane Terms.
Coordinate Systems and Projections. Geodesy, Map Projections and Coordinate Systems Geodesy - the shape of the earth and definition of earth datums Map.
LECTURE 3B – CHART PROJECTION. Introduction to Chart Projection  Usually we read chart in coordinate system.  A projected coordinate system is defined.
Map Projections Reference Globe Transformation Map Projection Reference Ellipsoid Sphere of Equal Area Geoid 3D-2D Transformation Process.
All maps will provide you with a Arrow indicating both truth North (the precise top axis of the earth’s spheroid) and a magnetic north which indicates.
Map Basics, partII GEOG 370 Christine Erlien, Instructor.
L 5 Map Projections Lecture Map projections are used to transfer or “project” geographical coordinates onto a flat surface.. There are many projections:
Introduction © 2005, Austin Troy. Map Projection © 2005, Austin Troy This is the method by which we transform the earth’s spheroid (real world) to a flat.
URBDP 422 URBAN AND REGIONAL GEO-SPATIAL ANALYSIS Lecture 3: Building a GeoDatabase; Projections Lab Session: Exercise 3: vector analysis Jan 14, 2014.
Map projections and datums
Map Projections Goal: translate places on the Earth (3D) to Cartesian coordinates (2D)
Basic Coordinate Systems Grid System RG 620 May 23, 2014 Institute of Space Technology, Karachi Grid System RG 620 May 23, 2014 Institute of Space Technology,
Chapter 3. Models of the Earth In order to locate points on Earth, we use models. Two general types of models: Maps Globes 2-Dimensional3-Dimensional More.
Chapter 3- Coordinate systems A coordinate system is a grid used to identify locations on a page or screen that are equivalent to grid locations on the.
Review of Projections and Coordinate Systems
CGF3M - Cooper. Circumference – 40,000 km Divided into 360 parts or straight lines that radiate from the centre of the crcle Angle between the lines called.
Geodesy, Map Projections and Coordinate Systems Geodesy - the shape of the earth and definition of earth datums Map Projection - the transformation of.
Map Projections RG 620 May 16, 2014 Institute of Space Technology, Karachi RG 620 May 16, 2014 Institute of Space Technology, Karachi.
Geocoding and Georeferencing
Chapter 2 - Mapping Our World
Coordinate Systems and Map Projections
Map Projections RG 620 April 20, 2016
Georeferencing Ming-Chun Lee.
Latitude Longitude.
Overview Ellipsoid Spheroid Geoid Datum Projection Coordinate System.
Harry Williams, Cartography
A guide to coordinate systems, datums, projections, and geoids.
Maps Base maps Coordinate Systems, Datums, Projections
MAP PROJECTIONS AND SCALE
Lecture 3 Map Projections
A guide to coordinate systems, datums, projections, and geoids.
Presentation transcript:

Lecture 4: Georeferencing Thanks to Joana Barros: Birkbeck College, London

Georeferencing ‘To georeference’  the act of assigning locations to atoms of information Is essential in GIS, since all information must be linked to the Earth’s surface The method of georeferencing must be: Unique, linking information to exactly one location Shared, so different users understand the meaning of a georeference Persistent through time, so today’s georeferences are still meaningful tomorrow

Uniqueness A georeference may be unique only within a defined domain, not globally There are many instances of Springfield in the U.S., but only one in any state The meaning of a reference to London may depend on context, since there are smaller Londons in several parts of the world

Georeferences as Measurements Some georeferences are metric They define location using measures of distance from fixed places E.g. distance from the Equator or from the Greenwich Meridian Others are based on ordering E.g. street addresses in most parts of the world order houses along streets Others are only nominal Placenames do not involve ordering or measuring

Metric references Essential to the making of maps and the display of mapped information in GIS Provide the potential for infinitely fine spatial resolution (provided we have sufficiently accurate measuring devices) From measurements of two or three locations it is possible to compute distances

Georeferencing systems Placenames Postal addresses and postal codes Linear referencing systems Cadastres Latitude and longitude Projections and coordinate systems The Global Positioning System

Placenames The earliest form of georeferencing And the most commonly used in everyday activities Many names of geographic features are universally recognized Others may be understood only by locals Names work at many different scales From continents to small villages and neighborhoods Names may pass out of use in time Where was Naples, CA?

Postal Addresses and Postcodes Every dwelling and office is a potential destination for mail Dwellings and offices are arrayed along streets, and numbered accordingly Streets have names that are unique within local areas Local areas have names that are unique within larger regions If these assumptions are true, then a postal address is a useful georeference

Gould/Tobler’s experiment (See CSISS Classics)

Where do postal addresses fail as georeferences? In rural areas Urban-style addresses have been extended recently to many rural areas For natural features Lakes, mountains, and rivers cannot be located using postal addresses When numbering on streets is not sequential E.g. in Japan

Postcodes as Georeferences Defined in many countries E.g. ZIP codes in the US Hierarchically structured The first few characters define large areas Subsequent characters designate smaller areas Coarser spatial resolution than postal address Useful for mapping

Central part of the Toronto metropolitan region Postcodes in Canada Forward Sortation Areas (FSA)  The first three characters of the six-character postcode form the FSA Central part of the Toronto metropolitan region

ZIP Code Boundaries in the US ZIP code boundaries are a convenient way to summarize data in the US. The dots on the left have been summarized as a density per square mile on the right

Linear Referencing A system for georeferencing positions on a road, street, rail, or river network Is closely related to street address but uses an explicit measurement of distance rather then the much less reliable surrogate of street address number Combines the name of the link with an offset distance along the link from a fixed point, most often an intersection

Users of Linear Referencing Transportation authorities  To keep track of pavement quality, signs, traffic conditions on roads Police  To record the locations of accidents Problem Cases Locations in rural areas may be a long way from an intersection or other suitable zero point Pairs of streets may intersect more than once Measurements of distance along streets may be inaccurate, depending on the measuring device, e.g. a car odometer

Cadastral Maps Defined as the map of land ownership in an area, maintained for the purposes of taxing land, or of creating a public record of ownership Parcels of land Are uniquely identified by number or code (PIN) Are reasonably persistent through time, but Very few people know the identification code of their home parcel, so the use of the cadaster as georeferencing is thus limited to local officials, with one major exception The Public Land Survey System (PLSS) in the US and similar systems in other countries provide a method of georeferencing linked to the cadastre (Township, Range, Section)

Principal meridians: Geographers lines

Township and Range

Latitude and Longitude The most comprehensive and powerful method of georeferencing Provides potential for very fine spatial resolution Allows distance to be computed between pairs of locations Supports other forms of spatial analysis Uses a well-defined and fixed reference frame Based on the Earth’s rotation and center of mass, and the Greenwich Meridian

Latitude and Longitude Latitude: is the angular distance, in degrees, minutes, and seconds of a point north or south of the Equator. Lines of latitude are often referred to as parallels. Longitude: is the angular distance, in degrees, minutes, and seconds, of a point east or west of the Prime (Greenwich) Meridian. Lines of longitude are often referred to as meridians.

Definition

The Earth’s shape The Earth is slightly flattened, such that the distance between the Poles is about 1 part in 300 less than the diameter at the Equator The Earth more accurately modeled as an spheroid (ellipsoid) than a sphere An spheroid is formed by rotating an ellipse about its shorter axis Ellipsoid allows variable radii

The History of Ellipsoids Because the Earth is not shaped precisely as an ellipsoid, initially each country felt free to adopt its own as the most accurate approximation to its own part of the Earth Without a single standard the maps produced by different countries using different ellipsoids could never be made to fit together Today an international standard has been adopted known as WGS 84 (the World Geodesic System of 1984)

Latitude and Longitude Define the location on Earth’s surface in terms of angles with respect to well-defined references The Royal Observatory at Greenwich The axis of rotation They constitute the most comprehensive system of georeferencing, and support a range of forms of analysis, including the calculation of distance between points on the curved surcace of the Earth Adopted as world standard in 1884 But many technologies for working with geographic data are inherently flat (Cartesian)!

Projections and Coordinates There are many reasons for wanting to project the Earth’s surface onto a plane, rather than deal with the curved surface The paper used to output GIS maps is flat Flat maps are scanned and digitized to create GIS databases Square and rectangular rasters are flat The Earth has to be projected to see all of it at once It’s much easier to measure distance on a plane

Distortions Any projection must distort the Earth in some way Two types of projections are important in GIS Conformal property: Shapes of small features are preserved, or in other words, scales of the projections in x and y directions are always equal Equal area property: Shapes are distorted, but areas measured on the map are always in the same proportion to areas on the Earth’s surface Both types of projections will generally distort distances

Map projections Cylindrical - analogous to wrapping a cylinder of paper around the Earth, projecting the Earth’s features onto it, and then unwrapping the cylinder Conical – analogous to wrapping a sheet of paper around the Earth in a cone Azimuthal or planar - analogous to touching the Earth with a sheet of flat paper

Cylindrical Projections The Mercator projection is the best-known cylindrical projection The cylinder is wrapped around the Equator The projection is conformal At any point scale is the same in both directions Shape of small features is preserved Features in high latitudes are significantly enlarged

Conic Projections Conceptualized as the result of wrapping a cone of paper around the Earth Standard Parallels occur where the cone intersects the Earth The Lambert Conformal Conic projection is commonly used to map North America On this projection lines of latitude appear as arcs of circles, and lines of longitude are straight lines radiating from the North Pole

The “Unprojected” Projection Assign latitude to the y axis and longitude to the x axis Also known as the Plate Carrée or Cylindrical Equidistant Projection A type of cylindrical projection Is neither conformal nor equal area As latitude increases, lines of longitude are much closer together on the Earth, but are the same distance apart on the projection

The Universal Transverse Mercator (UTM) Projection A type of cylindrical projection Implemented as an internationally standard coordinate system Initially devised as a military standard Uses a system of 60 zones Maximum distortion is 0.04% Transverse Mercator because the cylinder is wrapped around the Poles, not the Equator

The Universal Transverse Mercator (UTM) Projection Zones are each six degrees of longitude, numbered as shown at the top, from W to E

Implications of the Zone System UTM coordinates are in meters, making it easy to make accurate calculations of short distances between points Because each zone defines a different projection (60 different projections!) maps will not fit together across a zone boundary Zones become a problem at high latitudes (especially for cities that cross boundaries!) Jurisdictions that span two zones must make special arrangements Use only one of the two projections, and accept the greater-than-normal distortions in the other zone Use a third projection spanning the jurisdiction E.g. CA spans UTM zones 10 and 11

Local Systems: State Plane Coordinates All US states have adopted their own specialized coordinate systems Some states use multiple zones Several different types of projections are used by the system Provides less distortion than UTM Used for applications needing very high accuracy, such as surveying

Local Systems: The National Grid - UK It is administered by the Ordnance Survey of Great Britain provides a unique georeference for every point in England, Scotland, and Wales The first designating letter defines a 500 km square, and the second defines a 100 km square Within each square, two measurements, called easting and northing, define a location with respect to the lower left corner of the square

Converting Georeferences GIS applications often require conversion of projections and ellipsoids These are standard functions in popular GIS packages Street addresses must be converted to coordinates for mapping and analysis Using geocoding functions Placenames can be converted to coordinates using gazetteers

The Global Positioning System (GPS) Allows direct, accurate measurement of latitude and longitude Accuracy of 10m from a simple, cheap unit Differential GPS capable of sub-meter accuracy Sub-centimeter accuracy if observations are averaged over long periods

What is the Global Positioning System? Consists of a system of 24 satellites, each orbiting the Earth every 12 hours on distinct orbits at a height of 20 200km and transmitting radio pulses at very precisely timed intervals Position in a receiver is determined by precise calculations from: the satellite signals, the known positions of the satellites the velocity of light Position in the three dimesions (latitude, longitude and elevation) requires that at least 4 satellites are above the horizon Accuracy depends on the number of satellites and their positions

How does GPS work? Earth is continuously circled by 24 GPS satellites A GPS receiver listens for signals which give the satellites’ location and the exact time of sending. Trilateration then gives them your latitude, longitude