AC CONDUCTANCE AND NON-SYMMETRIZED NOISE AT FINITE FREQUENCY IN QUANTUM WIRE AND CARBON NANOTUBE Adeline CRÉPIEUX 1, Cristina BENA 2,3 and Inès SAFI 2.

Slides:



Advertisements
Similar presentations
A coherent subnanosecond single electron source
Advertisements

Superconducting properties of carbon nanotubes
Reference Bernhard Stojetz et al. Phys.Rev.Lett. 94, (2005)
1 High order moments of shot noise in mesoscopic systems Michael Reznikov, Technion Experiment: G. Gershon, Y. Bomze, D. Shovkun Theory: E. Sukhorukov.
Signatures of Tomonaga-Luttinger liquid behavior in shot noise of a carbon nanotube Patrik Recher, Na Young Kim, and Yoshihisa Yamamoto Institute of Industrial.
14 février 2011Evaluation AERES1 Equipe de Nanophysique – Groupe 2 Membres permanents Adeline Crépieux MdC U2 Pierre Devillard MdC U1 Thibaut Jonckheere.
Dynamical response of nanoconductors: the example of the quantum RC circuit Christophe Mora Collaboration with Audrey Cottet, Takis Kontos, Michele Filippone,
Dynamics of Vibrational Excitation in the C 60 - Single Molecule Transistor Aniruddha Chakraborty Department of Inorganic and Physical Chemistry Indian.
Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,
Chernogolovka, September 2012 Cavity-coupled strongly correlated nanodevices Gergely Zaránd TU Budapest Experiment: J. Basset, A.Yu. Kasumov, H. Bouchiat,
1 Molecular electronics: a new challenge for O(N) methods Roi Baer and Daniel Neuhauser (UCLA) Institute of Chemistry and Lise Meitner Center for Quantum.
Markus Büttiker University of Geneva The Capri Spring School on Transport in Nanostructures April 3-7, 2006 Scattering Theory of Conductance and Shot Noise.
Circuitry with a Luttinger liquid K.-V. Pham Laboratoire de Physique des Solides Pascal’s Festschrifft Symposium.
Superconducting transport  Superconducting model Hamiltonians:  Nambu formalism  Current through a N/S junction  Supercurrent in an atomic contact.
Multi-terminal spin dependent transport in carbon nanotubes Chéryl FEUILLET-PALMA Laboratoire Pierre Aigrain Ecole Normale Supérieure, Paris France Co-workers.
The Coulomb Blockade in Quantum Boxes Avraham Schiller Racah Institute of Physics Eran Lebanon (Hebrew University) Frithjof B. Anders (Bremen University)
Quantronics Group CEA Saclay, France B. Huard D. Esteve H. Pothier N. O. Birge Measuring current fluctuations with a Josephson junction.
Laterally confined Semiconductor Quantum dots Martin Ebner and Christoph Faigle.
Full counting statistics of incoherent multiple Andreev reflection Peter Samuelsson, Lund University, Sweden Sebastian Pilgram, ETH Zurich, Switzerland.
Scattering theory of conductance and noise Markus Büttiker University of Geneva Multi-probe conductors.
Thermal Enhancement of Interference Effects in Quantum Point Contacts Adel Abbout, Gabriel Lemarié and Jean-Louis Pichard Phys. Rev. Lett. 106,
Depts. of Applied Physics & Physics Yale University expt. K. Lehnert L. Spietz D. Schuster B. Turek Chalmers University K.Bladh D. Gunnarsson P. Delsing.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin Condensed matter seminar, BGU.
HF Focusing due to Field Aligned Density Perturbations A. Vartanyan 1, G. M. Milikh 1, K. Papadopoulos 1, M. Parrot 2 1 Departments of Physics and Astronomy,
Application to transport phenomena  Current through an atomic metallic contact  Shot noise in an atomic contact  Current through a resonant level 
Photon Supression of the shot noise in a quantum point contact Eva Zakka Bajjani Julien Ségala Joseph Dufouleur Fabien Portier Patrice Roche Christian.
Julien Gabelli Bertrand Reulet Non-Gaussian Shot Noise in a Tunnel Junction in the Quantum Regime Laboratoire de Physique des Solides Bât. 510, Université.
The Shot Noise Thermometer
Experiments on Luttinger liquid properties of
An Electronic Primary Thermometer Based on Thermal Shot Noise
Visibility of current and shot noise in electrical Mach-Zehnder and Hanbury Brown Twiss interferometers V. S.-W. Chung(鐘淑維)1,2, P. Samuelsson3 ,and.
Thierry Martin Centre de Physique Théorique & Université de la Méditerranée Detection of finite frequency current moments with a dissipative resonant circuit.
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
The Shot Noise Thermometer Lafe Spietz, K.W. Lehnert, I. Siddiqi, R.J. Schoelkopf Department of Applied Physics, Yale University Thanks to: Michel Devoret,
PY4007 – Quantum wires nanoparticle V1V1 V2V2 0 V C,R 1 C,R 2 C,R 3 A small conductive nanoparticle is connected via 3 tunnelling junctions to voltage.
Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental.
Lesson 5, Part 2: Electric field induced transport in nanostructures.
Markus Büttiker University of Geneva Haifa, Jan. 12, 2007 Mesoscopic Capacitors.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin University of Latvia, Riga, Latvia.
Ballistic and quantum transports in carbon nanotubes.
Observation of neutral modes in the fractional quantum hall effect regime Aveek Bid Nature (2010) Department of Physics, Indian Institute of Science,
Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the.
Fluctuation conductivity of thin films and nanowires near a parallel-
Dynamic response of a mesoscopic capacitor in the presence of strong electron interactions Yuji Hamamoto*, Thibaut Jonckheere, Takeo Kato*, Thierry Martin.
V. Brosco1, R. Fazio2 , F. W. J. Hekking3, J. P. Pekola4
FYRIRLESTRAMARAÞON HR 2011 | RU LECTURE MARATHON 2011 Ágúst Valfells Science and Engineering SIZE MATTERS –ELECTRON BEAMS AT THE MICROSCALE.
Carbon Nanotube Intramolecular Junctions. Nanotubes A graphene sheet with a hexagonal lattice…
1 Numerical Simulation of Electronic Noise in Si MOSFETs C. Jungemann Institute for Electronics Bundeswehr University Munich, Germany Acknowledgments:
Laboratoire Matériaux et Microélectronique de Provence UMR CNRS Marseille/Toulon (France) - M. Bescond, J-L. Autran, M. Lannoo 4 th.
ULIS 2003-Udine Italy Evolution of Si-SiO 2 interface trap density under electrical stress in MOSFETs with ultrathin oxides F. Rahmoune and D. Bauza Institut.
Recall-Lecture 4 Current generated due to two main factors
By Francesco Maddalena 500 nm. 1. Introduction To uphold Moore’s Law in the future a new generation of devices that fully operate in the “quantum realm”
T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov The Abdus Salam ICTP, Trieste, Italy Effect of magnetic field on thermoelectric coefficients of a single.
Quantum pumping and rectification effects in interacting quantum dots Francesco Romeo In collaboration with : Dr Roberta Citro Prof. Maria Marinaro University.
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
1 Realization of qubit and electron entangler with NanoTechnology Emilie Dupont.
Janyce Franc-Kyoto-GWADW1 Simulation and research for the future ET mirrors Janyce Franc, Nazario Morgado, Raffaele Flaminio Laboratoire des Matériaux.
Quantum Interference in Multiwall Carbon Nanotubes Christoph Strunk Universität Regensburg Coworkers and Acknowledgements: B. Stojetz, Ch. Hagen, Ch. Hendlmeier.
Www-f1.ijs.si/~bonca/work.html Cambridge, 2006 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Conductance.
Single Electron Transistor (SET)
Nikolai Kopnin Theory Group Dynamics of Superfluid 3 He and Superconductors.
Current noise in 1D electron systems ISSP International Summer School August 2003 Björn Trauzettel Albert-Ludwigs-Universität Freiburg, Germany [Chung.
Point contact properties of intermetallic compound YbCu (5-x) Al x (x = 1.3 – 1.75) G. PRISTÁŠ, M. REIFFERS Institute of Exp. Physics, Center of Low Temperature.
Single Electron Transistor (SET) CgCg dot VgVg e-e- e-e- gate source drain channel A single electron transistor is similar to a normal transistor (below),
Electronic transport in one-dimensional wires Akira Furusaki (RIKEN)
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Robert Konik, Brookhaven National Laboratory Hubert Saleur,
RESONANT TUNNELING IN CARBON NANOTUBE QUANTUM DOTS
Fig. 3 Temperature dependency.
Presentation transcript:

AC CONDUCTANCE AND NON-SYMMETRIZED NOISE AT FINITE FREQUENCY IN QUANTUM WIRE AND CARBON NANOTUBE Adeline CRÉPIEUX 1, Cristina BENA 2,3 and Inès SAFI 2 1 – Centre de Physique Théorique, CNRS Marseille, France 2 – Laboratoire de Physique des Solides, CNRS Orsay, France 3 – Institut de Physique Théorique, CEA Saclay, France Physical Review B 78, (2008)

CURRENT FLUCTUATIONS ORIGINS OF NOISE  High temperature : Johnson-Nyquist noise  High voltage : Shot noise  High frequency : Quantum noise  We neglect the 1/f noise ZERO FREQUENCY AND ZERO TEMPERATURE: SHOT NOISE  Schottky relation where HIGH FREQUENCY NOISE MEASUREMENTS  High-frequency measurement in a diffusive wire  On-chip detection using SIS junction  Direct measurement in a QPC What is measured is symmetrized noise non-symmetrized noise DEBLOCK et al., Science (2003) ZAKKA-BAJJANI et al., PRL (2007) SCHOELKOPF et al., PRL (1997)

THE SYSTEM GATE WIRE V1V1 V3V3 V2V2 IMPURITY xixi L MODEL WE CALCULATE PERTURBATIVELY  The non-symmetrized noise:  The AC conductance: where RESULT with symmetrized noise GENERALIZED KUBO-TYPE FORMULA SAFI AND SUKHORUKOV (unpublished) where COULOMB INTERACTIONS PARAMETER BACKSCATTERING AMPLITUDE

AC CONDUCTANCE WEAK-BACKSCATTERING LIMIT OF THE EXCESS AC CONDUCTANCE source-drain voltage where FOR g=1: FOR g≠1: because of the linearity of the I-V caracteristic oscillations with frequency with a pseudo-period related to the wire frequency The pseudo-period depends on L and g:

ZERO-FREQUENCY NOISE IN THE WEAK-BACKSCATTERING LIMIT where is the backscattering current  REGION A: short-wire limit  linear variation with voltage  qualitative agreement with experiments on carbon nanotubes  REGION B: long-wire limit  oscillations whose envelope has a power-law dependence  REGION C: high temperature limit  behaves like the noise of an infinite length interacting wire: power-law variation WU et al., PRL 99, (2007) HERRMANN et al., PRL 99, (2007)

FINITE-FREQUENCY NON-SYMMETRIZED NOISE SHORT-WIRE LIMIT FOR g=1: the non-symmetrized excess noise is symmetric FOR g≠1: the non-symmetrized excess noise becomes asymmetric WE CALCULATE because when g = 1 EMISSION ABSORPTION

FINITE-FREQUENCY NON-SYMMETRIZED NOISE LONG-WIRE LIMIT infinite length wire limit V1V1 V2V2 infinite length nanotube limit CARBON NANOTUBE four channels of conduction

AVERAGE NON-SYMMETRIZED NOISE EMISSION EXCESS NOISE AVERAGED FANO FACTOR NON-SYMMETRIZED NOISE SYMMETRIZED NOISE WE CALCULATE THE AVERAGE OVER THE FIRST HALF PERIOD  we obtain  it should be possible to extract the value of the interaction parameter g where

CONCLUSION ACKNOWLEDGMENTS TO: C. GLATTLI, H. BOUCHIAT, R. DEBLOCK T. KONTOS, B. REULET, E. SUKHORUKOV  Simple relation between the AC conductance the non-symmetrized noise  In the presence of Coulomb interactions, the non-symmetrized noise is asymmetric: Emission noise (  > 0) ≠ Absorption noise (  < 0)  At low-temperature and for a long wire or a long nanotube, we obtain oscillations with a period related to L and g  The average non-symmetrized excess noise over the first half period gives the value of g