First look at  -jet Samples using BDT e-ID Algorithm Hai-Jun Yang University of Michigan (with X. Li and B. Zhou) ATLAS egamma Meeting March 9, 2009.

Slides:



Advertisements
Similar presentations
Tracey Berry1 Looking into e &  for high energy e/  Dr Tracey Berry Royal Holloway.
Advertisements

QCD Background… and the Resolution Saminder Dhaliwal August 30 th 2005.
Implementation of e-ID based on BDT in Athena EgammaRec Hai-Jun Yang University of Michigan, Ann Arbor (with T. Dai, X. Li, A. Wilson, B. Zhou) US-ATLAS.
Background studies for GMSB Andrea Bangert Santa Cruz Institute for Particle Physics May 6 th, 2010.
 Track-First E-flow Algorithm  Analog vs. Digital Energy Resolution for Neutral Hadrons  Towards Track/Cal hit matching  Photon Finding  Plans E-flow.
W’  tb  lnubb efficiency VS. electron/muon P T cut muon channel electron channel.
Higgs Detection Sensitivity from GGF H  WW Hai-Jun Yang University of Michigan, Ann Arbor ATLAS Higgs Meeting October 3, 2008.
1 W’  tb  lnubb: the first read. 2 introduction sample: W’  tb  lnubb generator: PYTHIA number of events: 5000 will only use events in the good run.
1 introduction sample: W’  tb  Wbb  eνbb/μνbb generator: PYTHIA five samples with W’ mass: 300GeV, 500GeV, 1000GeV, 1500GeV, 2000GeV number of events.
1 Andrea Bangert, ATLAS SCT Meeting, Monte Carlo Studies Of Top Quark Pair Production Andrea Bangert, Max Planck Institute of Physics, CSC T6.
WW  e ν 14 April 2007 APS April Meeting WW/WZ production in electron-neutrino plus dijet final state at CDFAPS April Meeting April 2007 Jacksonville,
1 The CMS Heavy Ion Program Michael Murray Kansas.
Progress on B-tagging Efficiency Monica Dunford May 22 nd, 2007.
FTK update H→  Tony, Catalin By speeding up/adding rejection at LVL2, we can have a higher rate coming in from LVL1. Therefore some of the LVL1 threshold.
Using Track based missing Et tools to reject fake MET background Zhijun Liang,Song-Ming Wang,Dong liu, Rachid Mazini Academia Sinica 8/28/20151 TWiki page.
Tau Jet Identification in Charged Higgs Search Monoranjan Guchait TIFR, Mumbai India-CMS collaboration meeting th March,2009 University of Delhi.
Heavy charged gauge boson, W’, search at Hadron Colliders YuChul Yang (Kyungpook National University) (PPP9, NCU, Taiwan, June 04, 2011) June04, 2011,
Energy Flow Technique and *where I am Lily Have been looking at the technique developed by Mark Hodgkinson, Rob Duxfield of Sheffield. Here is a summary.
Boosted Decision Trees for Supersymmetry Searches Timothy Brooks Year 1 PhD Student Royal Holloway University of London.
LHCC Review, CERN, 19/10/99Paul Bright-Thomas, for Alan Watson 1 LVL1 Calorimeter Algorithm Updates Changes since the TDR: Greater “integration” of e/
C.ClémentTile commissioning meeting – From susy group talk of last Wednesday  Simulation and digitization is done in version (8) 
1 High energy photon pairs from RS-1 Gravitons: L1/HLT Studies Vladimir Litvin, Toyoko Orimoto Caltech, CMS WG4 Group Meeting 01 June 2007.
Lepton efficiency & fake rate Yousuke Kataoka University of Tokyo Content definitions of leptons p2 efficiency and fake rate for SU3 ( ) p3, p4.
B-tagging Performance based on Boosted Decision Trees Hai-Jun Yang University of Michigan (with X. Li and B. Zhou) ATLAS B-tagging Meeting February 9,
Valeria Perez Reale University of Bern On behalf of the ATLAS Physics and Event Selection Architecture Group 1 ATLAS Physics Workshop Athens, May
1 c. mills (Harvard U.) 20 September, 2010 W and Z Physics at ATLAS Corrinne Mills Harvard DOE Site Visit 20 September 2010.
A Study of Electron Identification Jim Branson UCSD with collaborators from FNAL, UCSB & UCSD.
1 Silke Duensing DØ Analysis Status NIKHEF Annual Scientific Meeting Analysing first D0 data  Real Data with:  Jets  Missing Et  Electrons 
13 July 2005 ACFA8 Gamma Finding procedure for Realistic PFA T.Fujikawa(Tohoku Univ.), M-C. Chang(Tohoku Univ.), K.Fujii(KEK), A.Miyamoto(KEK), S.Yamashita(ICEPP),
1 Single top in e+jets channel Outline : - Data and MC samples - Overview of the analysis - Loose and topological cuts - MC efficiencies and expected number.
Tth study Lepton ID with BDT 2015/02/27 Yuji Sudo Kyushu University 1.
CALOR April Algorithms for the DØ Calorimeter Sophie Trincaz-Duvoid LPNHE – PARIS VI for the DØ collaboration  Calorimeter short description.
Software offline tutorial, CERN, Dec 7 th Electrons and photons in ATHENA Frédéric DERUE – LPNHE Paris ATLAS offline software tutorial Detectors.
E. Soldatov Tight photon efficiency study using radiative Z decays (update) E.Yu.Soldatov 1, 1 National Research Nuclear University “MEPhI” Outline:
Analysis of H  WW  l l Based on Boosted Decision Trees Hai-Jun Yang University of Michigan (with T.S. Dai, X.F. Li, B. Zhou) ATLAS Higgs Meeting September.
B-tagging based on Boosted Decision Trees
Electron Calibration and Performance ( ) N. Benekos (MPI), R. Nikolaidou (Saclay), S. Paganis (Sheffield) Contributions from: A. Farbin (CERN) +
VBF H- > ττ- > lept had Electron Channel Jaspreet Sidhu ATLAS Toronto meeting
Electron reco and identification improvements for 17.2 rel & H  ZZ analysis Fany Dudziak ISU group meeting Focus Talk - June 4th
Trigger study on photon slice Yuan Li Feb 27 th, 2009 LPNHE ATLAS group meeting.
10 January 2008Neil Collins - University of Birmingham 1 Tau Trigger Performance Neil Collins ATLAS UK Physics Meeting Thursday 10 th January 2008.
C.Clement Eta RegionTraining regionVariable set |  |
S. Li 1,2, Y. Liu 1 E. Monnier 2, Z. Zhao 1 Center of Particle Physics and Technology, University of Sicence and Techonolody of China 1 & Centre de Physique.
Search for H  WW*  l l Based on Boosted Decision Trees Hai-Jun Yang University of Michigan LHC Physics Signature Workshop January 5-11, 2008.
TauID Algorithm に関する研究 Motivation Tau identification To do for improvement conclusion 中村浩二.
Electron Identification Efficiency from Z→ee Maria Fiascaris University of Oxford In collaboration with Tony Weidberg and Lucia di Ciaccio ATLAS UK SM.
W→e and W→e +jets: a data-driven selection method By Alessandro Tricoli ATLAS UK SM Meeting 4 th June 2008 In Collaboration with M. Wielers (RAL) D. Prieur.
Current Status of e-ID based on BDT Algorithm Hai-Jun Yang University of Michigan (with X. Li, T. Dai, A. Wilson, B. Zhou) BNL Analysis Jamboree March.
VBF H- > ττ- > lept had Electron Channel Analysis Jaspreet Sidhu
Photon purity measurement on JF17 Di jet sample using Direct photon working Group ntuple Z.Liang (Academia Sinica,TaiWan) 6/24/20161.
H->WW->lνlν Analysis - Improvements and results - - Data and MC - Higgs Working group meeting, 6 January 2011 Magda Chełstowska & Rosemarie Aben.
Converted photon and π 0 discrimination based on H    analysis.
1 Review BDT developments Migrate to version 12, AOD BDT for W , Z  AS group.
E. Soldatov Tight photon efficiency study using FSR photons from Z  ll  decays E.Yu.Soldatov 1, 1 National Research Nuclear University “MEPhI”
Methodology and examples to determine fake rate separate signal from background Using fit on sideband. Using independent control sample.
RD. Schaffer, L. Iconomidou Fayard, D. Fournier
Report Jet-veto SF and Uncertainties Jet smearing
Venkat Kaushik, Jae Yu University of Texas at Arlington
Study of Gamma+Jets production
Hyeon Jin Kim March 31, 2006 DOSAR
Electron Identification Based on Boosted Decision Trees
Update of Electron Identification Performance Based on BDTs
Implementation of e-ID based on BDT in Athena EgammaRec
 discrimination with converted photons
Performance of BDTs for Electron Identification
Samples and MC Selection
Converted photon and π0 discrimination based on H  cut-based analysis Zhen Zhang IHEP
Thesis topics converted photon and pi0 discrimination
Hyeonjin Kim EG1 meeting, Feb 27, 2008
Higgs  update Catalin and Tony May 22, 2007
Presentation transcript:

First look at  -jet Samples using BDT e-ID Algorithm Hai-Jun Yang University of Michigan (with X. Li and B. Zhou) ATLAS egamma Meeting March 9, 2009

H. Yang - BDT e-ID2 Motivation To estimate the dijet and  jet rejection rates using various e-ID algorithms (IsEM, Likelihood and BDT). MC samples for test include –DS108087,  jet –DS105802, JF17 dijet –DS106050, Z  ee signal

H. Yang - BDT e-ID3 MC  jet samples for test samples N_electron DS  jet DS JF17 dijets DS Z  ee N_events N_candidate Et>17 GeV, |  |< N_candidate (precuts) With EM/Track match Rejection/Efficiency after precuts Rejection 9.5 Rejection 42.7 Acceptance 86.7%

H. Yang - BDT e-ID4 Comparison of Input Variables

H. Yang - BDT e-ID5 Comparison of Input Variables  -jets electrons dijets

H. Yang - BDT e-ID6 Results of IsEM Et(jet) > 17GeV, Tight cuts - Efficiency (Z  ee) = 70.9% - Rejection (  jet) = 426(±4.7%) - Rejection (jf17) = 3092(±5.9%)

H. Yang - BDT e-ID7 e-ID (Likelihood) log(ElectronWt/BgWt) Et(jet) > 17GeV - Efficiency = 71% - Rej(  jet)=20(±1%) - Rej(jf17)=5200(±7.6%)

H. Yang - BDT e-ID8 e-ID (BDT_dijet) Et(jet) > 17GeV - Efficiency = 71% - Rej(  jet)=591(±5.5%) - Rej(jf17)=47830(±23%) BDT trained for dijets

H. Yang - BDT e-ID9 BDT peaks in  jet samples?

H. Yang - BDT e-ID10 BDT trained for dijets BDT

H. Yang - BDT e-ID11 BDT trained for dijets BDT

H. Yang - BDT e-ID12 e-ID (BDT_  jet) Et(jet) > 17GeV - Efficiency = 71% - Rej(  jet)=1788(±9.6%) - Rej(jf17)=19081(±15%) BDT trained for  jets

H. Yang - BDT e-ID13 BDT trained for  jets BDT

H. Yang - BDT e-ID14 BDT trained for  jets BDT

H. Yang - BDT e-ID15 BDT trained for dijets (top 10 vars) RankInput variableGini index 1Etcone20 / Et46.08% 2E2tsts1-Emins1(Emax2-Emin in LAr.1 st )8.60% 3No. of TRT hits / No. of B-layer hits6.68% 4deta1 between track and EM cluster5.21% 5Number of pixel hits4.48% 6F1(frac. of E deposited in LAr. 1 st samp)4.32% 7Ethad1/Et (E leakage in hcal. 1 st samp)3.94% 8E237 / E % 9Eta of inner track2.33% 10Number of B-layer hits2.19%

H. Yang - BDT e-ID16 BDT trained for  jets (top 10 vars) RankInput variableGini index 1Number of B-layer hits21.49% 2 Ntrk (  R=0.3) 17.94% 3  Pt (  R=0.3) 11.41% 4Number of pixel hits11.17% 5E233 / E % 6E237 / E % 7No. of TRT hits / No. of B-layer hits4.52% 8deta1 between track and EM cluster4.49% 9Etcone20 / Et4.20% 10F1(frac. of E deposited in LAr. 1 st samp)1.97%

H. Yang - BDT e-ID17 Summary samples e-IDs DS  Jet Rejection DS JF17 dijets Rejection DS Z  ee Acceptance IsEM (tight)426(±4.7%)3092(±5.9%)71%(±0.4%) Likelihood20(±1.0%)5200(±7.6%)71%(±0.4%) BDT (for dijets)591(±5.5%) 426(±4.7%) 47830(±23%) 27176(±17%) 71%(±0.4%) 77%(±0.3%) BDT (for  jets) 1788(±9.6%)19081(±15%)71%(±0.4%)

H. Yang - BDT e-ID18 Backup Slides

H. Yang - BDT e-ID19 BDT peaks in  jet samples?

H. Yang - BDT e-ID20 Comparison of Input Variables

H. Yang - BDT e-ID21 Comparison of Input Variables

H. Yang - BDT e-ID22 Comparison of Input Variables

H. Yang - BDT e-ID23 Comparison of Input Variables

H. Yang - BDT e-ID24 Comparison of Input Variables

H. Yang - BDT e-ID25 Comparison of Input Variables