Nucleon Axial and Nucleon-to-Delta Axial Transition Form Factors from Lattice QCD A. Tsapalis Institute of Accelerating Systems and Applications University.

Slides:



Advertisements
Similar presentations
Schleching 2/2008Präzisionsphysik mit Neutronen/5. Theorie n-Zerfall Neutron Decay St.Petersburg 1 5. zur Theorie β-Zerfall des Neutrons.
Advertisements

1 The and -Z Exchange Corrections to Parity Violating Elastic Scattering 周海清 / 东南大学物理系 based on PRL99,262001(2007) in collaboration with C.W.Kao, S.N.Yang.
Excited State Spectroscopy from Lattice QCD
Sasa PrelovsekScadron70, February Simulations of light scalar mesons on the lattice and related difficulties Scadron 70, IST Lisbon, Portugal (February.
Direct CP Asymmetries in hadronic D decays Cai-Dian Lü ( 吕才典 ) IHEP, Beijing Based on work collaborated with Hsiang-nan Li, Fu-Sheng Yu, arXiv: ,
Kab/SC-PAC Operated by the Southeastern Universities Research Association for the U.S. Department of Energy Thomas Jefferson National Accelerator.
Exotic and excited-state meson spectroscopy and radiative transitions from lattice QCD Christopher Thomas, Jefferson Lab In collaboration with: Jo Dudek,
1 Nuclear Binding and QCD ( with G. Chanfray) Magda Ericson, IPNL, Lyon SCADRON70 Lisbon February 2008.
F.Sanchez (UAB/IFAE)ISS Meeting, Detector Parallel Meeting. Jan 2006 Low Energy Neutrino Interactions & Near Detectors F.Sánchez Universitat Autònoma de.
The chiral partner of the nucleon in the mirror assignment University Frankfurt Susanna Wilms in collaboration with: Francesco Giacosa and.
1 Muon Capture by 3 He and The Weak Stucture of the Nucleon Doron Gazit Institute for Nuclear Theory arXiv:
Ralf W. Gothe Nucleon Transition Form Factors Beijing Transition Form Factors at JLab: The Evolution of Baryonic Degrees of Freedom Ralf W. Gothe.
The N to Delta transition form factors from Lattice QCD Antonios Tsapalis University of Athens, IASA EINN05, Milos,
1 Multi-nucleon bound states in N f =2+1 lattice QCD T. Yamazaki 1), K.-I. Ishikawa 2), Y. Kuramashi 3,4), A. Ukawa 3) 1) Kobayashi-Maskawa Institute,
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
Study of hadron properties in cold nuclear matter with HADES Pavel Tlustý, Nuclear Physics Institute, Řež, Czech Republic for the HADES Collaboration ,
Monday, Jan. 27, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #4 Monday, Jan. 27, 2003 Dr. Jae Yu 1.Neutrino-Nucleon DIS 2.Formalism of -N DIS.
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
Isospin mixing and parity- violating electron scattering O. Moreno, P. Sarriguren, E. Moya de Guerra and J. M. Udías (IEM-CSIC Madrid and UCM Madrid) T.
PANIC05 M. Liu1 Probing the Gluon Polarization with A LL of J/  at RHIC Ming X. Liu Los Alamos National Lab (PHENIX Collaboration)
Magnetic moments of baryon resonances Teilprojekt A3 Volker Metag II. Physikalisches Institut Universität Giessen Germany SFB/TR16 Mitgliederversammlung.
Πανεπιστήμιο Κύπρου Κ. Αλεξάνδρου BARYON STRUCTURE FROM LATTICE QCD C. Alexandrou University of Cyprus and Cyprus Institute First European CLAS12 Workshop,
Chiral Dynamics Workshop, JLAB, Aug. 6-10, 2012
Pion mass difference from vacuum polarization E. Shintani, H. Fukaya, S. Hashimoto, J. Noaki, T. Onogi, N. Yamada (for JLQCD Collaboration) December 5,
Nuclear Symmetry Energy from QCD Sum Rule The 5 th APFB Problem in Physics, August 25, 2011 Kie Sang JEONG Su Houng LEE (Theoretical Nuclear and Hadron.
Electromagnetic N →  (1232) Transition Shin Nan Yang Department of Physic, National Taiwan University  Motivations  Model for  * N →  N DMT (Dubna-Mainz-Taipei)
Dynamical study of N-  transition with N(e,e'  ) Shin Nan Yang Department of Physics National Taiwan University Collaborators: G.Y. Chen, J.C. Chen (NTU)
Electromagnetic N →  (1232) Transition Shin Nan Yang Department of Physics National Taiwan University Lattice QCD Journal Club, NTU, April 20, 2007 Pascalutsa,
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
Huey-Wen Lin — Workshop1 Semileptonic Hyperon Decays in Full QCD Huey-Wen Lin in collaboration with Kostas Orginos.
Nucleon and Roper on the Lattice Y. Chen Institute of High Energy Physics, CAS, China Collaborating with S.J. Dong, T. Draper, I. Horvath, F.X. Lee, K.F.
Modification of nucleon spectral function in the nuclear medium from QCD sum rules Collaborators: Philipp Gubler(ECT*), Makoto Oka Tokyo Institute of Technology.
Probing TeV scale physics in precision UCN decays Rajan Gupta Theoretical Division Los Alamos National Lab Lattice 2013 Mainz, 30 July 2013 Superconducting.
Dynamics of  →       F. Ambrosino T. Capussela F. Perfetto.
Kab/SC-PAC Operated by the Southeastern Universities Research Association for the U.S. Department of Energy Thomas Jefferson National Accelerator.
Deeply Virtual Meson Production and Transversity GPDs Valery Kubarovsky Jefferson Lab 1 Exclusive Meson Production and Short-Range Hadron Structure January.


Chiral symmetry and Δ(1232) deformation in pion electromagnetic production Shin Nan Yang Department of Physics National Taiwan University “11th International.
Shin Nan Yang National Taiwan University Collaborators: S. S. Kamalov (Dubna) D. Drechsel, L. Tiator (Mainz) Guan Yeu Chen (Taipei) DMT dynamical model.
Hadronic Form-Factors Robert Edwards Jefferson Lab Abstract: A TECHNOLOGY TALK!! Outline a known but uncommon method in 3-pt function calculations that.
C. Alexandrou, University of Cyprus PSI, December 18th 2007 Hadron Physics on the Lattice Πανεπιστήμιο Κύπρου Κ. Αλεξάνδρου.
Integrating out Holographic QCD Models to Hidden Local Symmetry Masayasu Harada (Nagoya University) Dense strange nuclei and compressed baryonic matter.
Tensor and Flavor-singlet Axial Charges and Their Scale Dependencies Hanxin He China Institute of Atomic Energy.
Marina Artuso WG1 CKM Status and future perspectives on V cs and V cd Marina Artuso Syracuse University.
Departamento de Física Teórica II. Universidad Complutense de Madrid José R. Peláez ON THE NATURE OF THE LIGHT SCALAR NONET FROM UNITARIZED CHIRAL PERTURBATION.
Dynamical Anisotropic-Clover Lattice Production for Hadronic Physics A. Lichtl, BNL J. Bulava, J. Foley, C. Morningstar, CMU C. Aubin, K. Orginos, W&M.
ChPT tests at NA62 Mauro Raggi, Laboratori Nazionali di Frascati On behalf of the NA62 collaboration X Th quark confinement and hadron spectrum Tum campus,
Pentaquark in Anisotropic Lattice QCD --- A possibility of a new 5Q resonance around 2.1 GeV N. Ishii (TITECH, Japan) T. Doi (RIKEN BNL) H. Iida (TITECH,
Low energy scattering and charmonium radiative decay from lattice QCD
Origin of Nucleon Mass in Lattice QCD
Baryons on the Lattice Robert Edwards Jefferson Lab Hadron 09
The puzzle of (1405) and  (1475)
Comprehensive study of S = -1 hyperon resonances via the coupled-channels analysis of K- p and K- d reactions Hiroyuki Kamano (KEK) 2016 JAEA/ASRC Reimei.
Polarization in charmless B VV decays
Institut für Theoretische Physik Technische Universität Wien
Structure and Dynamics of the Nucleon Spin on the Light-Cone
C. Alexandrou, University of Cyprus with
Nucleon Resonances from Lattice QCD
Low-energy precision observables and the role of lattice QCD
Deep Inelastic Parity Robert Michaels, JLab Electroweak Physics
Exciting Hadrons Vladimir Pascalutsa
Testing the Structure of Scalar Mesons in B Weak Decays
Strangeness and glue in the nucleon from lattice QCD
Duality in Pion Electroproduction (E00-108) …
Neutron EDM with external electric field
Pion transition form factor in the light front quark model
Measurement of Parity-Violation in the N→△ Transition During Qweak
Presentation transcript:

Nucleon Axial and Nucleon-to-Delta Axial Transition Form Factors from Lattice QCD A. Tsapalis Institute of Accelerating Systems and Applications University of Athens in collaboration with C. Alexandrou (Univ. of Cyprus) G. Koutsou (Univ. of Cyprus) Th. Leontiou (Univ. of Cyprus) J. W. Negele (MIT)

outline Nucleon Axial Form Factors G A and G P PCAC and pion pole dominance Nucleon-to-Delta Axial Transition FFs Lattice Evaluation of the FFs Results – Checking the Pion Pole dominance & Goldberger-Treiman (GT) relations in N-N & N-Δ Conclusions arXiv: , to appear in PRD

Nucleon Axial Form Factors axial isovector current axial vector form factorinduced pseudoscalar G A (q 2 ) – from neutrino scattering & pion electroproduction G P (q 2 ) – from muon capture experiments theoretically studied in chiral effective theories axial charge G A (0) = (29) from nuclear β decay pioneering lattice study in PRL (1995) ( K.F. Liu, S.J. Dong, T. Draper, W. Wilcox) recent study by LHPC+MILC, arXiv:

Pseudoscalar Form Factor & PCAC PCAC in hadron world Axial WT identity in QCD pseudoscalar current πΝΝ form factor defined via connected to πΝΝ strong coupling constant g πΝΝ = G πΝΝ (m π 2 ) PCAC

Pion Pole dominance & GT relations Pion pole on RHS constraints the induced pseudoscalar and leads to Goldberger-Treiman relation at q 2 = 0 satisfy to 5% accuracy from low energy πΝΝ dynamics also fixes the ratio

Nucleon to Δ(1232) Axial Transition Form Factors transverse part Adler parameterization small ≈ 0 dominant FFs C 5 A analogous to G A (q 2 )C 6 A analogous to G P (q 2 ) not much known experimentally electroproduction experiments at JLab will measure N to Δ parity violating asymmetry connected to C 5 A theoretical arguments indicate that C 3 A, C 4 A are small

Lattice study in PRL 98, (2006) established smallness of C 3 A and C 4 A, predicted q 2 dependence of dominant form factors C 5 A and C 6 A

Pseudoscalar πΝΔ Form Factor & PCAC πΝΔ form factor defined via connected to πΝΔ strong coupling constant g πΝΔ = G πΝΔ (m π 2 ) PCAC Non-diagonal Goldberger-Treiman relation Pion pole dominance relates:..and fixes the ratio

Evaluating Form Factors from Lattice QCD measure 3-point-functions of axial & pseudoscalar currents form ratios where t- and Z- dependence cancels determine the optimal linear combination of 3pts kinematics: X maximal number of momentum vectors contribute in rotationally symmetric fashion

optimizing the measurement sequential inversions through the sink X only one sequential inversion for G A (Q 2 ), G P (Q 2 ), G πNN (Q 2 ) all operators and momentameasured at small cost look for plateau in t 1 / Smear source & sink quarks to damp fast the excited states simultaneous overconstrained analysis of all data maximal accuracy for the form factors – Q 2 dependence

Lattice parameters Wilson N F = 0 β= x64 a=0.09 fm m π = 0.56 GeV m π = 0.49 GeV m π = 0.41 GeV Wilson N F = 2 β=5.6 a=0.08 fm 24 3 x40 m π = 0.69 GeV (TXL) 24 3 x40 m π = 0.51 GeV (TXL) 24 3 x32 m π = 0.38 GeV (DESY) Nucleon Axial N-to-Δ Axial + Hybrid scheme MILC N F = Domain Wall valence (L 5 =16) a=0.125 fm am s am u m π GeV 20 3 x GeV 20 3 x GeV 28 3 x64

plateaus for G πΝΝ Wilson N F =0, 32 3 x64, m π =0.49 GeV N F =2, 24 3 x40, m π =0.69 GeV Wilson N F =0, 32 3 x64, m π =0.41 GeV G A (Q 2 ), G P (Q 2 ), G πNN (Q 2 ) C 5 A (Q 2 ), C 6 A (Q 2 ), G πNΔ (Q 2 ) MILC(DWF) 0.01/0.05, m π =0.36 GeV 20 3 x64 vs 28 3 x64, source-sink distance 11a vs 13a Volume (2.5fm) 3 vs (3.5fm) 3 Ground state dominance Checking the parameters

Results (I) – Nucleon Axial Form Factors Hybrid results from LHPC & MILC (Hägler etal) dipole fit describes well G A m A >=1.5 GeV (solid / fit) m A =1.1 GeV (dotted / exp) pion pole dominates G p (dash) monopole fit (solid)

Results (II) – N to Δ Axial Transition FFs dipole fit describes well C A 5 m A >=1.5 GeV (solid / fit) m A =1.28 GeV (dotted / exp) pion pole dominates C A 6 (dash: wilson) (dot: MILC) monopole fit (solid)

Results (III) – Checking Ratios of GT relations pion pole dominance renormalization constants, f π, m q cancel 1.63(1) 1.60(2) 1.73(3) weak Q 2 and m q dependence

Conclusions momentum dependence of the NN & NΔ axial form factors is evaluated optimally in Lattice QCD dipole dependence of G A and C 5 A is verified – requires larger axial mass at the 410 MeV pion lattices monopole behavior of G p and C 6 A is verified unquenching effects are visible at low Q 2 and m π = 360 MeV in the Hybrid scheme (MILC+DWF) – G A approaches expected behavior ratios of GT relations in NN & NΔ systems are satisfied – show very weak quark mass and Q 2 dependence