Nuclear Collective Dynamics II, Istanbul, July 2004 Symmetry Approach to Nuclear Collective Motion II P. Van Isacker, GANIL, France Symmetry and dynamical.

Slides:



Advertisements
Similar presentations
Some (more) Nuclear Structure
Advertisements

1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Valence shell excitations in even-even spherical nuclei within microscopic model Ch. Stoyanov Institute for Nuclear Research and Nuclear Energy Sofia,
Testing isospin-symmetry breaking and mapping the proton drip-line with Lanzhou facilities Yang Sun Shanghai Jiao Tong University, China SIAP, Jan.10,
Generalized pairing models, Saclay, June 2005 Generalized models of pairing in non-degenerate orbits J. Dukelsky, IEM, Madrid, Spain D.D. Warner, Daresbury,
Pavel Stránský 29 th August 2011 W HAT DRIVES NUCLEI TO BE PROLATE? Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México Alejandro.
II. Spontaneous symmetry breaking. II.1 Weinberg’s chair Hamiltonian rotational invariant Why do we see the chair shape? States of different IM are so.
The Collective Model Aard Keimpema.
(taken from H-J. Wolesheima,
Structure of odd-odd nuclei in the interacting boson fermion-fermion model 3.
ISOLDE workshop, CERN, November 2008 Correlations between nuclear masses, radii and E0 transitions P. Van Isacker, GANIL, France Simple nuclear mass formulas.
NUCLEAR STRUCTURE PHENOMENOLOGICAL MODELS
Nuclei with more than one valence nucleon Multi-particle systems.
IAEA Workshop on NSDD, Trieste, November 2003 The nuclear shell model P. Van Isacker, GANIL, France Context and assumptions of the model Symmetries of.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Nuclear Binding Energy B tot (A,Z) = [ Zm H + Nm n - m(A,Z) ] c 2 B  m.
Outline  Simple comments on regularities of many-body systems under random interactions  Number of spin I states for single-j configuration  J-pairing.
NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France.
Nuclear structure investigations in the future. J. Jolie, Universität zu Köln.
Lecture 4 Nuclear Stability, The Shell Model. Nuclear Stability A sufficient condition for nuclear stability is that, for a collection of A nucleons,
Even-even nuclei odd-even nuclei odd-odd nuclei 3.1 The interacting boson-fermion model.
Symmetries in Nuclei, Tokyo, 2008 Symmetries in Nuclei Symmetry and its mathematical description The role of symmetry in physics Symmetries of the nuclear.
Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, (2005); PRC 76, (2007); PRC 78, (2008); PRC 79,
NUCLEAR MODELS.
fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A.
5. Exotic modes of nuclear rotation Tilted Axis Cranking -TAC.
FermiGasy. W. Udo Schröder, 2005 Angular Momentum Coupling 2 Addition of Angular Momenta    
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
1 New formulation of the Interacting Boson Model and the structure of exotic nuclei 10 th International Spring Seminar on Nuclear Physics Vietri sul Mare,
Themes and challenges of Modern Science Complexity out of simplicity -- Microscopic How the world, with all its apparent complexity and diversity can be.
Lecture 20: More on the deuteron 18/11/ Analysis so far: (N.B., see Krane, Chapter 4) Quantum numbers: (J , T) = (1 +, 0) favor a 3 S 1 configuration.
Symmetries in Nuclei, Tokyo, 2008 Symmetries in Nuclei Symmetry and its mathematical description The role of symmetry in physics Symmetries of the nuclear.
Collective Model. Nuclei Z N Character j Q obs. Q sp. Qobs/Qsp 17 O 8 9 doubly magic+1n 5/ K doubly magic -1p 3/
FermiGasy. W. Udo Schröder, 2005 Angular Momentum Coupling 2 Addition of Angular Momenta    
原子核配对壳模型的相关研究 Yanan Luo( 罗延安 ), Lei Li( 李磊 ) School of Physics, Nankai University, Tianjin Yu Zhang( 张宇 ), Feng Pan( 潘峰 ) Department of Physics, Liaoning.
The calculation of Fermi transitions allows a microscopic estimation (Fig. 3) of the isospin mixing amount in the parent ground state, defined as the probability.
The Algebraic Approach 1.Introduction 2.The building blocks 3.Dynamical symmetries 4.Single nucleon description 5.Critical point symmetries 6.Symmetry.
Isospin and mixed symmetry structure in 26 Mg DONG Hong-Fei, BAI Hong-Bo LÜ Li-Jun, Department of Physics, Chifeng university.
1 Proton-neutron pairing by G-matrix in the deformed BCS Soongsil University, Korea Eun Ja Ha Myung-Ki Cheoun.
Nuclear Models Nuclear force is not yet fully understood.
Isospin mixing and parity- violating electron scattering O. Moreno, P. Sarriguren, E. Moya de Guerra and J. M. Udías (IEM-CSIC Madrid and UCM Madrid) T.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
 Nature of nuclear forces, cont.  Nuclear Models lecture 3&4.
IAEA Workshop on NSDD, Trieste, November 2003 The interacting boson model P. Van Isacker, GANIL, France Dynamical symmetries of the IBM Neutrons, protons.
Nuclear Collective Excitation in a Femi-Liquid Model Bao-Xi SUN Beijing University of Technology KITPC, Beijing.
Partial dynamical symmetries in Bose-Fermi systems* Jan Jolie, Institute for Nuclear Physics, University of Cologne What are dynamical symmetries? Illustration.
NSDD Workshop, Trieste, February 2006 Nuclear Structure (I) Single-particle models P. Van Isacker, GANIL, France.
Shell Model with residual interactions – mostly 2-particle systems Start with 2-particle system, that is a nucleus „doubly magic + 2“ Consider two identical.
Symmetries and collective Nuclear excitations PRESENT AND FUTURE EXOTICS IN NUCLEAR PHYSICS In honor of Geirr Sletten at his 70 th birthday Stefan Frauendorf,
Lecture 23: Applications of the Shell Model 27/11/ Generic pattern of single particle states solved in a Woods-Saxon (rounded square well)
Petrică Buganu, and Radu Budaca IFIN-HH, Bucharest – Magurele, Romania International Workshop “Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects”
Lecture 21: On to Finite Nuclei! 20/11/2003 Review: 1. Nuclear isotope chart: (lecture 1) 304 isotopes with t ½ > 10 9 yrs (age of the earth) 177.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Shell model Notes: 1. The shell model is most useful when applied to closed-shell.
Nuclear and Radiation Physics, BAU, First Semester, (Saed Dababneh). 1 Extreme independent particle model!!! Does the core really remain inert?
Partial Dynamical Symmetry in Odd-Mass Nuclei A. Leviatan Racah Institute of Physics The Hebrew University, Jerusalem, Israel P. Van Isacker, J. Jolie,
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Some (more) High(ish)-Spin Nuclear Structure Paddy Regan Department of Physics Univesity of Surrey Guildford, UK Lecture 2 Low-energy.
The Semi-empirical Mass Formula
Interacting boson model s-bosons (l=0) d-bosons (l=2) Interpretation: “nucleon pairs with l = 0, 2” “quanta of collective excitations” Dynamical algebra:
The i 13/2 Proton and j 15/2 Neutron Orbital and the SD Band in A~190 Region Xiao-tao He En-guang Zhao En-guang Zhao Institute of Theoretical Physics,
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Electromagnetic moments Electromagnetic interaction  information about.
Variational Multiparticle-Multihole Configuration Mixing Method with the D1S Gogny force INPC2007, Tokyo, 06/06/2007 Nathalie Pillet (CEA Bruyères-le-Châtel,
Quantum Phase Transition from Spherical to γ-unstable for Bose-Fermi System Mahmut Böyükata Kırıkkale University Turkey collabration with Padova–Sevilla.
Monday, Oct. 2, 2006PHYS 3446, Fall 2006 Jae Yu 1 PHYS 3446 – Lecture #8 Monday, Oct. 2, 2006 Dr. Jae Yu 1.Nuclear Models Shell Model Collective Model.
Congresso del Dipartimento di Fisica Highlights in Physics –14 October 2005, Dipartimento di Fisica, Università di Milano Contribution to nuclear.
Pairing Evidence for pairing, what is pairing, why pairing exists, consequences of pairing – pairing gap, quasi-particles, etc. For now, until we see what.
Rotational energy term in the empirical formula for the yrast energies in even-even nuclei Eunja Ha and S. W. Hong Department of Physics, Sungkyunkwan.
Determining Reduced Transition Probabilities for 152 ≤ A ≤ 248 Nuclei using Interacting Boson Approximation (IBA-1) Model By Dr. Sardool Singh Ghumman.
The role of isospin symmetry in medium-mass N ~ Z nuclei
Ch. Stoyanov Two-Phonon Mixed-Symmetry States in the Domain N=52
Angular Momentum Coupling
Presentation transcript:

Nuclear Collective Dynamics II, Istanbul, July 2004 Symmetry Approach to Nuclear Collective Motion II P. Van Isacker, GANIL, France Symmetry and dynamical symmetry Symmetry in nuclear physics: Nuclear shell model Interacting boson model

Nuclear Collective Dynamics II, Istanbul, July 2004 The three faces of the shell model

Nuclear Collective Dynamics II, Istanbul, July 2004 Symmetries of the shell model Three bench-mark solutions: –No residual interaction  IP shell model. –Pairing (in jj coupling)  Racah’s SU(2). –Quadrupole (in LS coupling)  Elliott’s SU(3). Symmetry triangle:

Nuclear Collective Dynamics II, Istanbul, July 2004 Evidence for shell structure Evidence for nuclear shell structure from –2 + in even-even nuclei [E x, B(E2)]. –Nucleon-separation energies & nuclear masses. –Nuclear level densities. –Reaction cross sections. Is nuclear shell structure modified away from the line of stability?

Nuclear Collective Dynamics II, Istanbul, July 2004 Shell structure from E x (2 1 ) High E x (2 1 ) indicates stable shell structure:

Nuclear Collective Dynamics II, Istanbul, July 2004 Weizsäcker mass formula Total nuclear binding energy: For 2149 nuclei (N,Z≥8) in AME03: a V  16, a S  18, a I  7.3, a C  0.71, a P  13   rms  2.5 MeV.

Nuclear Collective Dynamics II, Istanbul, July 2004 Shell structure from masses Deviations from Weizsäcker mass formula:

Nuclear Collective Dynamics II, Istanbul, July 2004 Racah’s SU(2) pairing model Assume large spin-orbit splitting  ls which implies a jj coupling scheme. Assume pairing interaction in a single-j shell: Spectrum of 210 Pb:

Nuclear Collective Dynamics II, Istanbul, July 2004 Solution of pairing hamiltonian Analytic solution of pairing hamiltonian for identical nucleons in a single-j shell: Seniority  (number of nucleons not in pairs coupled to J=0) is a good quantum number. Correlated ground-state solution (cfr. super- fluidity in solid-state physics). G. Racah, Phys. Rev. 63 (1943) 367

Nuclear Collective Dynamics II, Istanbul, July 2004 Pairing and superfluidity Ground states of a pairing hamiltonian have a superfluid character: –Even-even nucleus (  =0): –Odd-mass nucleus (  =1): Nuclear superfluidity leads to –Constant energy of first 2 + in even-even nuclei. –Odd-even staggering in masses. –Smooth variation of two-nucleon separation energies with nucleon number. –Two-particle (2n or 2p) transfer enhancement.

Nuclear Collective Dynamics II, Istanbul, July 2004 Superfluidity in semi-magic nuclei Even-even nuclei: –Ground state has  =0. –First-excited state has  =2. –Pairing produces constant energy gap: Example of Sn nuclei:

Nuclear Collective Dynamics II, Istanbul, July 2004 Two-nucleon separation energies Two-nucleon separation energies S 2n : (a) Shell splitting dominates over interaction. (b) Interaction dominates over shell splitting. (c) S 2n in tin isotopes.

Nuclear Collective Dynamics II, Istanbul, July 2004 Pairing with neutrons and protons For neutrons and protons two pairs and hence two pairing interactions are possible: –Isoscalar (S=1,T=0): –Isovector (S=0,T=1):

Nuclear Collective Dynamics II, Istanbul, July 2004 Neutron-proton pairing hamiltonian A hamiltonian with two pairing terms, …has an SO(8) algebraic structure. H is solvable (or has dynamical symmetries) for g 0 =0, g 1 =0 and g 0 =g 1.

Nuclear Collective Dynamics II, Istanbul, July 2004 SO(8) ‘quasi-spin’ formalism A closed algebra is obtained with the pair operators S ± with in addition This set of 28 operators forms the Lie algebra SO(8) with subalgebras B.H. Flowers & S. Szpikowski, Proc. Phys. Soc. 84 (1964) 673

Nuclear Collective Dynamics II, Istanbul, July 2004 Solvable limits of SO(8) model Pairing interactions can expressed as follows: Symmetry lattice of the SO(8) model:  Analytic solutions for g 0 =0, g 1 =0 and g 0 =g 1.

Nuclear Collective Dynamics II, Istanbul, July 2004 Superfluidity of N=Z nuclei T=0 & T=1 pairing has quartet superfluid character with SO(8) symmetry. Pairing ground state of an N=Z nucleus:  Condensate of  ’s (  depends on g 01 /g 10 ). Observations: –Isoscalar component in condensate survives only in N~Z nuclei, if anywhere at all. –Spin-orbit term reduces isoscalar component.

Nuclear Collective Dynamics II, Istanbul, July 2004 Deuteron transfer in N=Z nuclei Deuteron intensity c T 2 calculated in schematic model based on SO(8). Parameter ratio b/a fixed from masses. In lower half of shell: b/a  5.

Nuclear Collective Dynamics II, Istanbul, July 2004 Symmetries of the shell model Three bench-mark solutions: –No residual interaction  IP shell model. –Pairing (in jj coupling)  Racah’s SU(2). –Quadrupole (in LS coupling)  Elliott’s SU(3). Symmetry triangle:

Nuclear Collective Dynamics II, Istanbul, July 2004 Wigner’s SU(4) symmetry Assume the nuclear hamiltonian is invariant under spin and isospin rotations: Since {S ,T,Y  } form an SU(4) algebra: –H nucl has SU(4) symmetry. –Total spin S, total orbital angular momentum L, total isospin T and SU(4) labels (  ) are conserved quantum numbers. E.P. Wigner, Phys. Rev. 51 (1937) 106 F. Hund, Z. Phys. 105 (1937) 202

Nuclear Collective Dynamics II, Istanbul, July 2004 Physical origin of SU(4) symmetry SU(4) labels specify the separate spatial and spin-isospin symmetry of the wave function: Nuclear interaction is short-range attractive and hence favours maximal spatial symmetry.

Nuclear Collective Dynamics II, Istanbul, July 2004 Breaking of SU(4) symmetry Non-dynamical breaking of SU(4) symmetry as a consequence of –Spin-orbit term in nuclear mean field. –Coulomb interaction. –Spin-dependence of residual interaction. Evidence for SU(4) symmetry breaking from –Masses: rough estimate of nuclear BE from –  decay: Gamow-Teller operator Y ,  1 is a generator of SU(4)  selection rule in (  ).

Nuclear Collective Dynamics II, Istanbul, July 2004 SU(4) breaking from masses Double binding energy difference  V np  V np in sd-shell nuclei: P. Van Isacker et al., Phys. Rev. Lett. 74 (1995) 4607

Nuclear Collective Dynamics II, Istanbul, July 2004 SU(4) breaking from  decay Gamow-Teller decay into odd-odd or even- even N=Z nuclei: P. Halse & B.R. Barrett, Ann. Phys. (NY) 192 (1989) 204

Nuclear Collective Dynamics II, Istanbul, July 2004 Elliott’s SU(3) model of rotation Harmonic oscillator mean field (no spin-orbit) with residual interaction of quadrupole type: State labelling in LS coupling: J.P. Elliott, Proc. Roy. Soc. A 245 (1958) 128; 562

Nuclear Collective Dynamics II, Istanbul, July 2004 Importance/limitations of SU(3) Historical importance: –Bridge between the spherical shell model and the liquid droplet model through mixing of orbits. –Spectrum generating algebra of Wigner’s SU(4) supermultiplet. Limitations: –LS (Russell-Saunders) coupling, not jj coupling (zero spin-orbit splitting)  beginning of sd shell. –Q is the algebraic quadrupole operator  no major-shell mixing.

Nuclear Collective Dynamics II, Istanbul, July 2004 Tripartite classification of nuclei Evidence for seniority-type, vibrational- and rotational-like nuclei: Need for model of vibrational nuclei. N.V. Zamfir et al., Phys. Rev. Lett. 72 (1994) 3480

Nuclear Collective Dynamics II, Istanbul, July 2004 The interacting boson model Spectrum generating algebra for the nucleus is U(6). All physical observables (hamiltonian, transition operators,…) are expressed in terms of s and d bosons. Justification from –Shell model: s and d bosons are associated with S and D fermion (Cooper) pairs. –Geometric model: for large boson number the IBM reduces to a liquid-drop hamiltonian. A. Arima & F. Iachello, Ann. Phys. (NY) 99 (1976) 253; 111 (1978) 201; 123 (1979) 468

Nuclear Collective Dynamics II, Istanbul, July 2004 Algebraic structure of the IBM The U(6) algebra consists of the generators The harmonic oscillator in 6 dimensions, …has U(6) symmetry since Can the U(6) symmetry be lifted while preserving the rotational SO(3) symmetry?

Nuclear Collective Dynamics II, Istanbul, July 2004 The IBM hamiltonian Rotational invariant hamiltonian with up to N- body interactions (usually up to 2): For what choice of single-boson energies  s and  d and boson-boson interactions  L ijkl is the IBM hamiltonian solvable? This problem is equivalent to the enumeration of all algebras G that satisfy

Nuclear Collective Dynamics II, Istanbul, July 2004 Dynamical symmetries of the IBM The general IBM hamiltonian is An entirely equivalent form of H IBM is The coefficients  i and  j are certain combinations of the coefficients  i and  L ijkl.

Nuclear Collective Dynamics II, Istanbul, July 2004 The solvable IBM hamiltonians Without N-dependent terms in the hamiltonian (which are always diagonal) If certain coefficients are zero, H IBM can be written as a sum of commuting operators:

Nuclear Collective Dynamics II, Istanbul, July 2004 The U(5) vibrational limit Spectrum of an anharmonic oscillator in 5 dimensions associated with the quadrupole oscillations of a droplet’s surface. Conserved quantum numbers: n d, , L. A. Arima & F. Iachello, Ann. Phys. (NY) 99 (1976) 253 D. Brink et al., Phys. Lett. 19 (1965) 413

Nuclear Collective Dynamics II, Istanbul, July 2004 The SU(3) rotational limit Rotation-vibration spectrum with  - and  - vibrational bands. Conserved quantum numbers: (,  ), L. A. Arima & F. Iachello, Ann. Phys. (NY) 111 (1978) 201 A. Bohr & B.R. Mottelson, Dan. Vid. Selsk. Mat.-Fys. Medd. 27 (1953) No 16

Nuclear Collective Dynamics II, Istanbul, July 2004 The SO(6)  -unstable limit Rotation-vibration spectrum of a  -unstable body. Conserved quantum numbers: , , L. A. Arima & F. Iachello, Ann. Phys. (NY) 123 (1979) 468 L. Wilets & M. Jean, Phys. Rev. 102 (1956) 788

Nuclear Collective Dynamics II, Istanbul, July 2004 Synopsis of IBM symmetries Symmetry triangle of the IBM: –Three standard solutions: U(5), SU(3), SO(6). –SU(1,1) analytic solution for U(5)  SO(6). –Hidden symmetries (parameter transformations). –Deformed-spherical coexistent phase. –Partial dynamical symmetries. –Critical-point symmetries?

Nuclear Collective Dynamics II, Istanbul, July 2004 Extensions of the IBM Neutron and proton degrees freedom (IBM-2): –F-spin multiplets (N +N  =constant). –Scissors excitations. Fermion degrees of freedom (IBFM): –Odd-mass nuclei. –Supersymmetry (doublets & quartets). Other boson degrees of freedom: –Isospin T=0 & T=1 pairs (IBM-3 & IBM-4). –Higher multipole (g,…) pairs.

Nuclear Collective Dynamics II, Istanbul, July 2004 Scissors excitations Collective displacement modes between neutrons and protons: –Linear displacement (giant dipole resonance): R -R   E1 excitation. –Angular displacement (scissors resonance): L -L   M1 excitation. N. Lo Iudice & F. Palumbo, Phys. Rev. Lett. 41 (1978) 1532 F. Iachello, Phys. Rev. Lett. 53 (1984) 1427 D. Bohle et al., Phys. Lett. B 137 (1984) 27

Nuclear Collective Dynamics II, Istanbul, July 2004 Supersymmetry A simultaneous description of even- and odd- mass nuclei (doublets) or of even-even, even- odd, odd-even and odd-odd nuclei (quartets). Example of 194 Pt, 195 Pt, 195 Au & 196 Au: F. Iachello, Phys. Rev. Lett. 44 (1980) 772 P. Van Isacker et al., Phys. Rev. Lett. 54 (1985) 653 A. Metz et al., Phys. Rev. Lett. 83 (1999) 1542

Nuclear Collective Dynamics II, Istanbul, July 2004 Example of 195 Pt

Nuclear Collective Dynamics II, Istanbul, July 2004 Example of 196 Au

Nuclear Collective Dynamics II, Istanbul, July 2004 Algebraic many-body models The integrability of any quantum many-body (bosons and/or fermions) system can be analyzed with algebraic methods. Two nuclear examples: –Pairing vs. quadrupole interaction in the nuclear shell model. –Spherical, deformed and  -unstable nuclei with s,d-boson IBM.

Nuclear Collective Dynamics II, Istanbul, July 2004 Other fields of physics Molecular physics: –U(4) vibron model with s,p-bosons. –Coupling of many SU(2) algebras for polyatomic molecules. Similar applications in hadronic, atomic, solid- state, polymer physics, quantum dots… Use of non-compact groups and algebras for scattering problems. F. Iachello, 1975 to now