Spin Structure in the Resonance Region Sarah K. Phillips The University of New Hampshire Chiral Dynamics 2009, Bern, Switzerland July 7, 2009 For the CLAS.

Slides:



Advertisements
Similar presentations
K. Slifer, UNH JLab Readiness Review for the E Collaboration E May 6, 2011.
Advertisements

E : Spin-Duality Analysis update Patricia Solvignon Temple University, Philadelphia Hall A Collaboration Meeting, June 23-24, 2005.
Measuring the Neutron and 3 He Spin Structure at Low Q 2 Vincent Sulkosky College of William and Mary, Williamsburg VA Experimental Overview The.
Measuring the Neutron and 3 He Spin Structure at Low Q 2 Vincent Sulkosky for the JLab Hall A Collaboration College of William and Mary, Williamsburg VA.
The Spin Structure of 3 He and the Neutron at Low Q 2 : A Measurement of the Extended GDH Integral Vincent Sulkosky (for the JLab Hall A Collaboration)
Target Fragmentation studies at JLab M.Osipenko in collaboration with L. Trentadue and F. Ceccopieri, May 20,SIR2005, JLab, Newport News, VA CLAS Collaboration.
Rory Miskimen University of Massachusetts, Amherst
1 First Measurement of the Structure Function b 1 on Tensor Polarized Deuteron Target at HERMES A.Nagaitsev Joint Institute for Nuclear Research, Dubna.
Measuring the Proton Spin Polarizabilities in Real Compton Scattering Philippe Martel – UMass Amherst Advisor: Rory Miskimen TUNL (Triangle Universities.
Experimental requirements for GPD measurements at JLab energies. Detector that ensures exclusivity of process, measurement of complete final state Measure.
Quark-Hadron Duality Cynthia Keppel Hampton University / Jefferson Lab.
Working Group on e-p Physics A. Bruell, E. Sichtermann, W. Vogelsang, C. Weiss Antje Bruell, JLab EIC meeting, Hampton, May Goals of this parallel.
Study of two pion channel from photoproduction on the deuteron Lewis Graham Proposal Phys 745 Class May 6, 2009.
Big Electron Telescope Array (BETA) Experimental Setup Expected Results Potential Physics from SANE Electron scattering provides a powerful tool for studying.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Deeply Virtual Exclusive Reactions with CLAS Valery Kubarovsky Jefferson Lab ICHEP July 22, 2010, Paris, France.
Spin Azimuthal Asymmetries in Semi-Inclusive DIS at JLAB  Nucleon spin & transverse momentum of partons  Transverse-momentum dependent distributions.
Motivation. Why study ground state hyperon electroproduction? CLAS detector and analysis. Analysis results. Current status and future work. M. Gabrielyan.
Spin and azimuthal asymmetries in SIDIS at JLAB  Physics Motivation  Jlab kinematics and factorization  Double spin asymmetries  Single Spin Asymmetries.
New results on SIDIS SSA from JLab  Physics Motivation  Double spin asymmetries  Single Spin Asymmetries  Future measurements  Summary H. Avakian.
EG4 Update Krishna Adhikari Old Dominion University Oct 12, 2012.
Duality: Recent and Future Results Ioana Niculescu James Madison University Hall C “Summer” Workshop.
Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent.
Measurement of F 2 and R=σ L /σ T in Nuclei at Low Q 2 Phase I Ya Li Hampton University January 18, 2008.
EG4 Update Sebastian Kuhn Old Dominion University June 21, 2013 With help from Krishna Adhikari, Alexandre Deur, Marco Ripani and the EG4 group.
Deeply Virtual Compton Scattering on the neutron Malek MAZOUZ LPSC Grenoble EINN 2005September 23 rd 2005.
Jim Stewart DESY Measurement of Quark Polarizations in Transversely and Longitudinally Polarized Nucleons at HERMES for the Hermes collaboration Introduction.
Single-Spin Asymmetries at CLAS  Transverse momentum of quarks and spin-azimuthal asymmetries  Target single-spin asymmetries  Beam single-spin asymmetries.
Jump to first page Quark-Hadron Duality Science Driving the 12 GeV Upgrade Cynthia Keppel for Jefferson Lab PAC 23.
A Measurement of Two-Photon Exchange in Unpolarized Elastic Electron-Proton Scattering John Arrington and James Johnson Northwestern University & Argonne.
Higher order forward spin polarizabilities Barbara Pasquini Pavia U. and INFN Pavia Paolo Pedroni Dieter Drechsel Paolo Pedroni Dieter Drechsel INFN Pavia.
Nucleon Polarizabilities: Theory and Experiments
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
Measuring the Spin Structure of 3 He and the Neutron at Low Q 2 Timothy Holmstrom College of William and Mary For the Jefferson Lab Hall A Collaboration.
Deeply Virtual Meson Production and Transversity GPDs Valery Kubarovsky Jefferson Lab 1 Exclusive Meson Production and Short-Range Hadron Structure January.
Thomas Jefferson National Accelerator Facility PAC-25, January 17, 2004, 1 Baldin Sum Rule Hall C: E Q 2 -evolution of GDH integral Hall A: E94-010,
Harut Avakian (Jlab) DVCS results with unpolarized and polarized target Introduction Event selection MC simulations and radiative corrections DVCS with.
Measurement of Flavor Separated Quark Polarizations at HERMES Polina Kravchenko (DESY) for the collaboration  Motivation of this work  HERMES experiment.
Overview of Jefferson Lab’s Spin Physics Programme Stephen Bültmann - ODU RHIC/AGS Users Meeting, June 2007 Introduction Experimental Setup Asymmetry Measurement.
Nilanga Liyanage University of Virginia For Jefferson Lab Hall A, CLAS and RSS Collaborations.
TMD flavor decomposition at CLAS12 Patrizia Rossi - Laboratori Nazionali di Frascati, INFN  Introduction  Spin-orbit correlations in kaon production.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
Spin Structure of the neutron (3He) in the resonance region Patricia Solvignon Temple University, Philadelphia For the JLAB Hall A and E Collaborations.
Vincent Sulkosky Massachusetts Institute of Technology Spokespeople: J.-P. Chen, A. Deur, F. Garibaldi Hall A Collaboration Meeting June 13 th, 2013 E97-110:
EG4-Update Krishna Adhikari (Graduate student) Old Dominion University Deep Processes Working Group Meeting Feb 23, 2008, Jlab.
The Spin Physics Program at Jefferson Lab Sebastian Kuhn Old Dominion University e e PtPt PePe.
The EG4 Experiment: A Low Q 2 Determination of the GDH Integral Sarah K. Phillips The University of New Hampshire JLab Users Group Meeting June 9, 2009.
Nucleon spin physics with CLAS at Jlab Fifth International Conference on PERSPECTIVES IN HADRONIC PHYSICS Particle-Nucleus and Nucleus-Nucleus Scattering.
Vincent Sulkosky Massachusetts Institute of Technology The 7 th International Workshop on Chiral Dynamics August 10 th, 2012 Newport News, VA.
E97-110: Small Angle GDH Experimental Status Report E97-110: Small Angle GDH Experimental Status Report Vincent Sulkosky Massachusetts Institute of Technology.
Time-like Compton Scattering with CLAS12 S. Stepanyan (JLAB) CLAS12 European Workshop February 25-28, 2009, Genova, Italy.
Double spin asymmetry measurement from SANE-HMS data at Jefferson Lab Hoyoung Kang For SANE collaboration Seoul National University DIS /04/23.
EG4-Update Krishna Adhikari Old Dominion University Deep Processes Working Group Meeting Nov 2, 2007, Jlab.
Moments and Structure Functions at Low Q 2 Rolf Ent, DIS Formalism - F 2 Moments: Old Analysis (R “Guess”…) - E L/T Separation  F 2, F 1,
1 CLAS-eg1 pol.-proton analysis H.Avakian (JLab) semi-SANE Collaboration Meeting April 21, 2005.
Hall A Collaboration Meeting Slide 0 Measurements of Target Single-Spin Asymmetries in QE 3 He ↑ (e, e’) Update of QE A y (E05-015) experiment.
CLAS Collaboration at Jefferson Lab Deuteron Spin Structure function g 1 at low Q 2 from EG4 Experiment Krishna P. Adhikari, Sebastian E. Kuhn Old Dominion.
X. Zheng, NSTAR 09, Beijing, China 1 /32 Double and Single-Target Asymmetries of Pion Electroproduction from JLab/CLAS EG4 Experiment The JLab/CLAS EG4.
Timelike Compton Scattering at JLab
A.V. Eskin (Samara University) In collaboration with A.P. Martynenko
Theory : phenomenology support 12 GeV
Higher twist effects in polarized experiments
Wide Angle Compton Scattering
L*(1520) Photoproduction off Proton and Neutron from CLAS eg3 data set
University of New Hampshire Nuclear & Particle Physics Group
Single Spin Asymmetry with a Transversely Polarized
Spin Duality on the Neutron (3He)
Quark & Hadron Dynamics: AIACE
Helicity dependence of g n ® Nπ(π) and the GDH integral on the neutrom
Presentation transcript:

Spin Structure in the Resonance Region Sarah K. Phillips The University of New Hampshire Chiral Dynamics 2009, Bern, Switzerland July 7, 2009 For the CLAS EG4 Collaboration

Inclusive electron scattering GDH Sum Rule, moments, and spin polarizabilities Virtual photon asymmetries Jefferson Lab's Hall B CLAS EG4 Inclusive measurement Exclusive measurement Future measurement: g 2 p Summary Nucleon Spin Structure in the Resonance Region

Inclusive Electron Scattering The usual definitions: Four-momentum transfer squared: Structure functions: Invariant mass squared: Bjorken variable: Spin-dependent structure functions: Unpolarized Case Structure functions: Bjorken variable: Invariant mass squared: Four-momentum transfer squared: Structure functions characterize deviation from point-like behavior

Inclusive Electron Scattering The usual definitions: Four-momentum transfer squared: Structure functions: Invariant mass squared: Bjorken variable: Spin-dependent structure functions: Polarized Case All four ( F 1, F 2, g 1, g 2 ) are needed for a complete description of nucleon structure! Spin-dependent structure functions: Structure functions: Bjorken variable: Invariant mass squared: Four-momentum transfer squared:

The GDH Sum Rule At Q 2 = 0 (real photon limit): The GDH Sum Rule relates the difference of the two photo-absorption cross sections to the anomalous magnetic moment of the nucleon κ. Circularly polarized photons incident on a longitudinally polarized target. σ 3/2 (σ 1/2 ) denotes the photo-absorption cross section with photon helicity parallel (anti-parallel) to the target spin. Sum rules are solid theoretical predictions based on general principles. Derived in the real photon limit, but can be generalized for virtual photons. The GDH Sum Rule relates the difference of the two photo-absorption cross sections to the anomalous magnetic moment of the nucleon κ. Circularly polarized photons incident on a longitudinally polarized target. σ 3/2 (σ 1/2 ) denotes the photo-absorption cross section with photon helicity parallel (anti-parallel) to the target spin. Sum rules are solid theoretical predictions based on general principles. Derived in the real photon limit, but can be generalized for virtual photons.

The Generalized GDH Sum Rule At Q 2 = 0, the GDH sum rule is recovered. At Q 2 → ∞, the Bjorken sum rule is recovered. The first moment Γ 1 Connected to the total spin carried by the quarks. Ji and Osborne, J. Phys. G27, 127 (2001) For virtual photons, Rule can be expressed as the integral of g 1 (x,Q 2 ) Can be linked to the forward spin-dependent Compton amplitude S 1 (0,Q 2 ) by the extended GDH sum rule At Q 2 = 0, the GDH sum rule is recovered. At Q 2 → ∞, the Bjorken sum rule is recovered.

Measurements of Γ 1 Y. Prok et al. Phys. Lett. B672 12, 2009 Measurements from EG1 (a and b), SLAC, Hermes EG4 will push to lower Q 2 Other low Q 2 data from EG1b and Hall A's E and E (on polarized 3 He) ProtonDeuteron

Generalized Forward Spin Polarizabilities Higher moments of spin structure functions are interesting too! Additional x-weighting emphasizes the kinematic region measured at JLab. D. Drechsel et al. Phys. Rep. 378 (2003) 99 Ideal quantities to test calculations of χ PT at low Q 2 ! γ 0 is sensitve to resonances, but δ LT is insensitive to the Δ resonance

Generalized Forward Spin Polarizabilities Y. Prok et al. Phys. Lett. B672 12, 2009 However, agreement is not so great between EG1b data and χPT calculations! Same problem exists for the proton and neutron.

Generalized Forward Spin Polarizabilities Same problem exists for the E neutron data and χPT calculations! Kao, Spitzenberg, and Vanderhaeghen, Phys.Rev.D67: (2003) Bernard, Hemmert, Meissner, Phys.Rev.D67: (2003) M. Amarian et al. Phys. Rev. Lett. 93, (2004) Bernard, Hemmert, Meissner with Δ resonance and vector meson contributions

Importance of Spin Structure Measurements at Low Q 2 How can we measure this? Extract helicity-dependent inclusive cross sections, then extract the structure function g 1. At low Q 2, the behaviour of the GDH integral and Γ 1 is predicted by chiral perturbation theories Sheds light on questions like Measurements are important for calculations of hydrogen hyperfine structure Data at very low Q 2 can give an accurate test of chiral perturbation theory predictions At what distance scale are these calculations valid? Where do resonances give important contributions to the first moment?

Virtual Photon Asymmetries Inclusive doubly polarized cross section: A 1, A 2 are the spin-dependent asymmetries σ T, σ L are the total absorption cross sections for transverse and longitudinal cross sections The measured asymmetries are defined as A ║ - target polarization held parallel to the longitudinally polarized electrons A ┴ - target polarization held perpendicular

Virtual Photon Asymmetries Form the polarized cross section differences: The spin structure functions g 1 and g 2 are related by σ total = unpolarized cross section; σ raw after radiative and other corrections

Spin Structure at Jefferson Lab Polarized e - Source A C B Data have been taken in all three experimental halls on spin structure functions Data cover from to 5 GeV 2 on proton, deuteron, and 3 He targets Electron beams up to 5.7 GeV with > 80% longitudinal polarization.

Spin Structure with CLAS in Hall B EG1 EG4 Cebaf Large Acceptance Spectrometer Six-coil toroidal magnetic field Six individually instrumented sectors Large acceptance Spin structure measurements in the resonance region: Q 2 = 0.05 to 5 GeV 2 Large kinematic coverage Focused on lower Q 2 from – 0.5 GeV 2 to test chiral perturbation theory predictions of the GDH sum rule.

Kuhn, Chen, and Leader. Prog.Part.Nucl.Phys.63:1-50,2009 CLAS EG1 data for g 1 p At low Q 2, the Δ(1232) resonance drives the asymmetry (and thus g 1 ) negative. Red curve is the EG1 model used for radiative corrections g 1 p from CLAS EG1

Kuhn, Chen, and Leader. Prog.Part.Nucl.Phys.63:1-50,2009 CLAS EG1 data for g 1 p As Q 2 increases, g 1 becomes positive everywhere. g 1 p from CLAS EG1

The EG4 Experiment Spokespeople NH 3: M. Battaglieri, A. Deur, R. De Vita, M. Ripani (Contact) ND 3: A. Deur (Contact), G. Dodge, K. Slifer Ph.D. Students K. Adhikari, H. Kang, K. Kovacs The CLAS EG4 experiment is focused on the measurement of the generalized GDH sum rule for the proton and neutron (deuteron) at very low Q 2 (0.015 – 0.5 GeV 2 ) Measured polarized electrons scattered off polarized targets down to 6° scattering angles Will extract g 1 from the helicity dependent inclusive cross sections Measured polarized electrons scattered off polarized targets down to 6° scattering angles Will extract g 1 from the helicity dependent inclusive cross sections NH 3: M. Battaglieri, A. Deur, R. De Vita, M. Ripani (Contact) ND 3: A. Deur (Contact), G. Dodge, K. Slifer

EG4 Experimental Set-Up EG4 ran from February to May 2006 in Hall B using CLAS. Longitudinally polarized CLAS NH 3 and ND 3 targets at -1m w.r.t. CLAS center. Longitudinally polarized electron beam (P b ~ 80%) at low energies (1-3 GeV); outbending torus field. Cross section measurement requires uniform detection efficiency at low Q 2. New Cherenkov detector (INFN – Genova) installed in sector-6 for detecting small angle scatterings down to 6º with uniform and high efficiencies. EG4 ran from February to May 2006 in Hall B using CLAS. Longitudinally polarized CLAS NH 3 and ND 3 targets at -1m w.r.t. CLAS center. Longitudinally polarized electron beam (P b ~ 80%) at low energies (1-3 GeV); outbending torus field.

EG4 Kinematics NH 3 target (P t = 80 – 90 %)ND 3 target (P t = 30 – 45 %) Good coverage of the resonance region

Expected Results on the Generalized GDH Sum Rule ProtonNeutron

Exclusive Channel Analysis In addition to the inclusive analysis, an exclusive analysis is underway to extract the pion electroproduction asymmetries in the nucleon resonance region. Observables in pion electroproduction Cross section: Three independent asymmetries: Single-beam Single-target Double beam-target

EG4 Exclusive Channel Analysis This analysis will extract A t and A et from EG4 data for These results will help to constrain models and chiral perturbation theory predictions at low Q 2 NH3 target: ND3 target: and

Preliminary Asymmetries Asymmetries not corrected for contribution from unpolarized nucleons in target Data indicates about 20% of events are from polarized protons in the NH3 target Models are scaled by 0.2 to compare with data (X. Zheng)

More Measurements to Come... EG4: g1p E : g 2 p The g 2 p structure function will be determined by E in JLab Hall A in the resonance region for 0.02 < Q 2 < 0.4 GeV 2. Will run in 2011 EG4 measured g 1 p and g 1 d at low Q 2 (0.015 – 0.5 GeV 2 ) Can evaluate the BC sum and the longitudinal-transverse polarizability δ LT from these data.

The Hall A g 2 p Experiment (E08-027) Inclusive measurement at forward angle of the proton spin-dependent cross sections to determine g 2 p in the resonance region for 0.02 < Q 2 < 0.4 GeV 2. Can evaluate the BC sum and the longitudinal-transverse polarizability δ LT from these data.

Summary Determine the behavior of g 1 (x,Q 2 ) at very low Q 2 Extract the proton and the neutron GDH sums at very low Q 2 ; Extract pion electroproduction asymmetries A t and A et ; Compare to Chiral Perturbation Theory calculations. Analysis on the EG4 data is well underway! EG4 will Previous data from EG1b show large contributions from resonance; EG4 results should be interesting! Stay tuned for our new results, and data yet to come! JLab and CLAS has (and will take more) structure function data in the resonance region.

Uncertainties Uncertainties on Γ d 1 δ DIS : the uncertainty due to the unmeasured contribution to the integral from W = Wmax to W = ∞. δ trans : due to lack of transverse target spin data δσ born : uncertainty on the polarized cross section difference after radiative corrections δ syst : total systematic uncertainty, added in quadrature δ stat : the statistical uncertainty

Systematic Errors Errors on the generalized GDH sum for the proton:

Neutron Extraction Kahn, Melnitchouk, and Kulagin, PRC 79, (2009) Kulagin and Melnitchouk, PRC 77, (2008) C. Ciofi degli Atti and S. Scopetta, Phys. Lett. B404, 223 (1997)

World Data Well KnownPretty Well Known

Hydrogen Hyperfine Structure The hyperfine splitting of hydrogen has been measured to a relative accuracy of , but calculations are only accurate to a few ppm. Due to lack of knowledge of nucleon structure at low Q 2 ! Q 2 weighting of Δ 1 and Δ 2 ensures low momentum transfer region dominates integrals Precise measurements of g 1, g 2 at low Q 2 needed! Fermi energy Proton structure correction Nazaryan, Carlson, and Griffioen, Phys.Rev.Lett 96: (2006)

Resonance and Spin Structure Nucleon resonances can generally be described in terms of three helicity amplitudes: A 3/2 (Q 2 ) – transverse photons leading to a final state helicity 3/2 A 1/2 (Q 2 ) – transverse photons leading to a final state helicity 1/2 S 1/2 (Q 2 ) – longitudinal photons These amplitudes are directly related to the photon asymmetries: By studying the Q 2 dependency, information on the relative strength of resonances and transitions can be determined.