Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: adaptive expectations Original citation: Dougherty, C. (2012) EC220.

Slides:



Advertisements
Similar presentations
ADAPTIVE EXPECTATIONS 1 The dynamics in the partial adjustment model are attributable to inertia, the drag of the past. Another, completely opposite, source.
Advertisements

ADAPTIVE EXPECTATIONS: FRIEDMAN'S PERMANENT INCOME HYPOTHESIS
EC220 - Introduction to econometrics (chapter 11)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: consequences of autocorrelation Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: model c assumptions Original citation: Dougherty, C. (2012) EC220 -
THE ERROR CORRECTION MODEL 1 The error correction model is a variant of the partial adjustment model. As with the partial adjustment model, we assume a.
EC220 - Introduction to econometrics (chapter 3)
EC220 - Introduction to econometrics (review chapter)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: slope dummy variables Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: a Monte Carlo experiment Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: introduction to maximum likelihood estimation Original citation: Dougherty,
EC220 - Introduction to econometrics (chapter 7)
1 XX X1X1 XX X Random variable X with unknown population mean  X function of X probability density Sample of n observations X 1, X 2,..., X n : potential.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: types of regression model and assumptions for a model a Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: asymptotic properties of estimators: plims and consistency Original.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 13) Slideshow: stationary processes Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (chapter 13) Slideshow: tests of nonstationarity: introduction Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: dynamic model specification Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: testing a hypothesis relating to a regression coefficient Original citation:
1 THE NORMAL DISTRIBUTION In the analysis so far, we have discussed the mean and the variance of a distribution of a random variable, but we have not said.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: interactive explanatory variables Original citation: Dougherty, C. (2012)
EC220 - Introduction to econometrics (chapter 7)
1 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red This sequence provides an example of a discrete random variable. Suppose that you.
Random effects estimation RANDOM EFFECTS REGRESSIONS When the observed variables of interest are constant for each individual, a fixed effects regression.
MEASUREMENT ERROR 1 In this sequence we will investigate the consequences of measurement errors in the variables in a regression model. To keep the analysis.
EC220 - Introduction to econometrics (chapter 2)
EC220 - Introduction to econometrics (chapter 9)
EXPECTED VALUE OF A RANDOM VARIABLE 1 The expected value of a random variable, also known as its population mean, is the weighted average of its possible.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: expected value of a function of a random variable Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: variable misspecification iii: consequences for diagnostics Original.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: confidence intervals Original citation: Dougherty, C. (2012) EC220.
EC220 - Introduction to econometrics (chapter 1)
EC220 - Introduction to econometrics (review chapter)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: continuous random variables Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: prediction Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: semilogarithmic models Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: nonlinear regression Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: maximum likelihood estimation of regression coefficients Original citation:
EC220 - Introduction to econometrics (chapter 12)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: Chow test Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: the normal distribution Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: dummy variable classification with two categories Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: two sets of dummy variables Original citation: Dougherty, C. (2012) EC220.
1 PREDICTION In the previous sequence, we saw how to predict the price of a good or asset given the composition of its characteristics. In this sequence,
EC220 - Introduction to econometrics (review chapter)
1 UNBIASEDNESS AND EFFICIENCY Much of the analysis in this course will be concerned with three properties of estimators: unbiasedness, efficiency, and.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: sampling and estimators Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: the effects of changing the reference category Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: autocorrelation, partial adjustment, and adaptive expectations Original.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: conflicts between unbiasedness and minimum variance Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 8) Slideshow: measurement error Original citation: Dougherty, C. (2012) EC220 - Introduction.
THE FIXED AND RANDOM COMPONENTS OF A RANDOM VARIABLE 1 In this short sequence we shall decompose a random variable X into its fixed and random components.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: Friedman Original citation: Dougherty, C. (2012) EC220 - Introduction.
CONSEQUENCES OF AUTOCORRELATION
ALTERNATIVE EXPRESSION FOR POPULATION VARIANCE 1 This sequence derives an alternative expression for the population variance of a random variable. It provides.
EC220 - Introduction to econometrics (chapter 8)
MULTIPLE RESTRICTIONS AND ZERO RESTRICTIONS
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: footnote: the Cochrane-Orcutt iterative process Original citation: Dougherty,
A.1The model is linear in parameters and correctly specified. PROPERTIES OF THE MULTIPLE REGRESSION COEFFICIENTS 1 Moving from the simple to the multiple.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: instrumental variable estimation: variation Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: multiple restrictions and zero restrictions Original citation: Dougherty,
1 We will continue with a variation on the basic model. We will now hypothesize that p is a function of m, the rate of growth of the money supply, as well.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: alternative expression for population variance Original citation:
Definition of, the expected value of a function of X : 1 EXPECTED VALUE OF A FUNCTION OF A RANDOM VARIABLE To find the expected value of a function of.
1 ESTIMATORS OF VARIANCE, COVARIANCE, AND CORRELATION We have seen that the variance of a random variable X is given by the expression above. Variance.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: confidence intervals Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: independence of two random variables Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: simple regression model Original citation: Dougherty, C. (2012) EC220.
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Presentation transcript:

Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: adaptive expectations Original citation: Dougherty, C. (2012) EC220 - Introduction to econometrics (chapter 11). [Teaching Resource] © 2012 The Author This version available at: Available in LSE Learning Resources Online: May 2012 This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 License. This license allows the user to remix, tweak, and build upon the work even for commercial purposes, as long as the user credits the author and licenses their new creations under the identical terms

ADAPTIVE EXPECTATIONS 1 The dynamics in the partial adjustment model are attributable to inertia, the drag of the past. Another, completely opposite, source of dynamics, is the effect of anticipations.

ADAPTIVE EXPECTATIONS 2 On the basis of information currently available, agents—individuals, households, enterprises—form expectations about the future values of key variable and adapt their plans accordingly.

ADAPTIVE EXPECTATIONS 3 In its simplest form, the dependent variable Y t is related, not to the current value of the explanatory variable, X t, but to the value anticipated in the next time period, X e t+1.

ADAPTIVE EXPECTATIONS 4 X e t+1 in general will be subjective and unobservable. To make the model operational, we hypothesize that expectations are updated in response to the discrepancy between what had been anticipated for the current time period, X e t, and the actual outcome, X t.

ADAPTIVE EXPECTATIONS 5 As in the partial adjustment model, may be interpreted as a speed of adjustment and should lie between 0 and 1. We can rewrite the adaptive expectations relationship as shown.

ADAPTIVE EXPECTATIONS 6 This indicates that, according to this model, the expected level of X in the next time period is a weighted average of what had been expected for the current time period and the actual outcome for the current time period.

ADAPTIVE EXPECTATIONS 7 Substituting for X e t+1 from the adaptive expectations relationship, we obtain the equation shown. Unfortunately, there is still an unobservable variable, X e t, on the right side of the equation.

ADAPTIVE EXPECTATIONS 8 There are two ways of dealing with this problem. One involves repeated lagging and substitution. If the adaptive expectations process is true for time period t, it is true for time period t–1.

ADAPTIVE EXPECTATIONS 9 Substitute for X t e in the equation for Y t.

ADAPTIVE EXPECTATIONS 10 Lagging and substituting s times in this way, we obtain the equation shown.

ADAPTIVE EXPECTATIONS 11 We are assuming that 0 < ≤ 1. It follows that 0 ≤ 1 – < 1 and hence that (1 – ) s tends to zero as s becomes large. Hence, for sufficiently large s, we can drop the unobservable final term without incurring serious omitted variable bias.

ADAPTIVE EXPECTATIONS 12 The specification is nonlinear in parameters and so we would fit the model using some nonlinear estimation technique.

ADAPTIVE EXPECTATIONS 13 The other way of dealing with the unobservable term proceeds as follows. If the original model is valid for time period t, it is also valid for time period t – 1.

ADAPTIVE EXPECTATIONS 14 From this one obtains an expression for  2 X e t.

ADAPTIVE EXPECTATIONS 15 Substituting for  2 X e t in the equation for Y t, one obtains a model in ADL(1,0) form. The model is now entirely in terms of observable variables and is therefore operational. where

ADAPTIVE EXPECTATIONS 16 Note that, apart from the compound disturbance term, it is mathematically the same as that for the partial adjustment model. where

ADAPTIVE EXPECTATIONS 17 Hence, if one fitted the model to a sample of data, it would be difficult to tell whether the underlying process were partial adjustment or adaptive expectations, despite the fact that the approaches are opposite in spirit. This is an example of observational equivalence of two theories. where

Copyright Christopher Dougherty These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author. The content of this slideshow comes from Section 11.4 of C. Dougherty, Introduction to Econometrics, fourth edition 2011, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre Individuals studying econometrics on their own and who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics or the University of London International Programmes distance learning course 20 Elements of Econometrics