Hyperfine Effects in Non-Rigid Molecules with 5 Equivalent Nuclei Laurent H. Coudert Laboratoire Inter-Universitaire des Systèmes Atmosphériques Créteil,

Slides:



Advertisements
Similar presentations
Objectives To learn about the shapes of the s, p and d orbitals
Advertisements

Quantum Number Keep in mind are probabilities of finding electrons in certain places doing certain things(spin). n = what energy level (1, 2, 3, 4...)
1 THz vibration-rotation-tunneling (VRT) spectroscopy of the water (D 2 O) 3 trimer : --- the 2.94THz torsional band L. K. Takahashi, W. Lin, E. Lee, F.
The microwave spectrum of partially deuterated species of dimethyl ether D. Lauvergnat, a L. Margulès, b R. A. Motyenko, b J.-C. Guillemin, c and L. H.
Hamiltonians for Floppy Molecules (as needed for FIR astronomy) A broad overview of state-of-the-art successes and failures for molecules with large amplitude.
Resonant Transition = “spin flip” of electron Allowed transitions:  M s = + 1 = 9.6 GHz (X-band microwave) Ex) One unpaired electron: E  E = h M s =
The Inversion Splitting of 15 NH 2 D and 15 ND 2 H as obtained from their FIR Spectra M. Elkeurti, 1 L. H. Coudert, 2 J. Orphal, 2 C. E. Fellows, 3 and.
NMR: Theory and Equivalence. Nuclear Magnetic Resonance Powerful analysis – Identity – Purity No authentic needed Analyze nuclei – 1 H, 13 C, 31 P, etc.
1 Molecular Hamiltonians and Molecular Spectroscopy.
Physics 452 Quantum mechanics II Winter 2012 Karine Chesnel.
Electronic Configuration Pauli exclusion principle – no two electrons in an atom can have the same four quantum numbers.
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
Electron Spin as a Probe for Structure Spin angular momentum interacts with external magnetic fields g e  e HS e and nuclear spins I m Hyperfine Interaction.
S- orbitals (l=0) p- orbital (l=1) d-orbital (l=2)
Microwave Spectroscopy II
Quantum Numbers How to find your atom’s address in the Periodic Table Hotel.
Stark Effect and Torsional Motion Interaction in Biphenyl L. H. Coudert, a L. F. Pacios, b and J. Ortigoso c a LISA, CNRS/Paris 12 University, Créteil,
An Analysis of the 3 band of HTO aided by the Partridge and Schwenke PES Modou Tine and Laurent H. Coudert Laboratoire Inter-Universitaire des Systèmes.
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
Interaction of the hyperfine coupling and the internal rotation in methylformate M. TUDORIE, D. JEGOUSO, G. SEDES, T. R. HUET, Laboratoire de Physique.
Outline 1. Introduction 2. User community and accuracy needs 3. Which large-amplitude motions 4. Which tools = which sym. operations 5. Example (in progress)
Chem-To-Go Lesson 8 Unit 2 QUANTUM MECHANICAL MODEL You’ll need a periodic table, FOUR different colors, and a pen or pencil to make the labels. Press.
1 I. STRUCTURE OF SUBSTANCES I.2. Electronic configuration of the atoms Louis de Broglie (France) and Werner Schrödinger (Austria) in the mid 1920s, suggested.
“Global Fit” of the high resolution infrared data of D 2 S and HDS molecules O. N. Ulenikov, E. S. Bekhtereva Physical Chemistry, ETH-Zurich, CH-8093 Zurich,
Ch. 5.2 Electron Configuration in Atoms. Electron Configurations Determined by three rules: the aufbau principle, the Pauli exclusion principle, and Hund’s.
Chapter 5 Orbital Filling Diagrams and Electron Dot Diagrams.
Slide 1/21 CHEM2915 A/Prof Adam Bridgeman Room: Introduction to the Electronic.
441 Chem Introduction to Spectroscopy CH-1 1. Introduction to Spectroscopy Set of methods where interaction of electromagnetic radiation with chemical.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Rotational spectroscopy of two telluric compounds : vinyl- and ethyl-tellurols R.A. MOTIYENKO, L. MARGULES, M. GOUBET Laboratoire PhLAM, CNRS UMR 8523,
The Microwave Spectrum of the HCOOCD 2 H species of Methyl Formate L. H. Coudert, a T. R. Huet, b L. Margulès, b R. Motyenko, b and H. Møllendal c a LISA,
Aufbau Principle An electron occupies the lowest energy orbital that can receive it.
C We have to solve the time independent problem H o  o = E o  o Harry Kroto 2004.
Analysis of the microwave spectrum of the three-top molecule trimethoxylmethane L. Coudert, a G. Feng, b and W. Caminati b a Laboratoire Interuniversitaire.
The Microwave Spectrum of Monodeuterated Acetamide CH 2 DC(=O)NH 2 I. A. Konov, a L. H. Coudert, b C. Gutle, b T. R. Huet, c L. Margulès, c R. A. Motiyenko,
Figure 12.1: (a) Schematic of a quantum dot embedded in a host. The electron wavefunction is largely confined to the dot material, but does penetrate into.
Determining the Tunneling Path of the Ar-CHF 3 Complex L. Coudert, a W. Caminati, b A. Maris, b P. Ottaviani, b and A. C. Legon c a Laboratoire Interuniversitaire.
Electron Configurations. The way electrons are arranged in atoms.
Unusual Internal Rotation Coupling in the Microwave Spectrum of Pinacolone Yueyue Zhao 1, Ha Vinh Lam Nguyen 2, Wolfgang Stahl 1, Jon T. Hougen 3 1 Institute.
Section 4-3 Electron Configurations. Quantum Mechanical Model Energy Levels have sublevels Each sublevel contains orbitals –Orbital – a 3-D region around.
Section 11.3 Atomic Orbitals 1.To identify the shapes of the s, p, d, and f orbitals 2.To describe the energy levels and orbitals of the wave mechanical.
Vibrational and Hyperfine Coupling Effects in (HI) 2 S. P. Belov, F. Willaert, B. A. McElmurry, R. R. Lucchese, J. W. Bevan, L. H. Coudert, and J. T. Hougen.
Quantum Numbers n, l, m, and s – Used to describe an electron in an atom Probable location n – Principal Quantum Number – Represents main energy level.
Electron Location: Part III Electron Configuration.
Chapter 5 UEQ Electrons in Atoms What does an atom really look like?
A GROUP THEORETICAL ANALYSIS OF ESR SPECTRUM OF tert-BUTYL RADICAL AT LOW TEMPERATURES S. Kubota, T. Momose and T. Shida H3CH3C CH 3 C.
1- Introduction, overview 2- Hamiltonian of a diatomic molecule 3- Molecular symmetries; Hund’s cases 4- Molecular spectroscopy 5- Photoassociation of.
P. JANSEN, W. UBACHS, H. L. BETHLEM
A New Hybrid Program For Fitting Rotationally Resolved Spectra Of methylamine-like Molecules: Application to 2-Methylmalonaldehyde Isabelle Kleiner a and.
The gerade Rydberg states of molecular hydrogen Daniel Sprecher, 1 Christian Jungen, 2 and Frédéric Merkt 1 1 Laboratory of Physical Chemistry, ETH Zurich,
The Microwave Spectrum of the Mono Deuterated Species of Methyl Formate HCOOCH 2 D L. H. Coudert, a L. Margulès, b G. Wlodarczak, b and J. Demaison b a.
Electron Configuration. WHHYYYYY do we need to learn this? When atoms interact, it’s the valence electrons that interact first. Atoms are least stable.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
I. STRUCTURE OF SUBSTANCES
Quiz_26 Multi-electron atoms & Exclusion Principle
Orbitals and Quantum Numbers
Quantum Mechanical Model
Electron Arrangement in an Atom
PHY 745 Group Theory 11-11:50 AM MWF Olin 102 Plan for Lecture 24:
Electron Configuration Orbital Notation Lewis-Electron Dot Diagram
Nuclear Magnetic Resonance Spectroscopy
Quantum Numbers.
Electrons in Atoms Electron Configuration Orbital Notation
Internal tunneling effect in an entangled cold atom condensate
Electron Arrangement in Atoms
Electron Configurations
F H F O Semiexperimental structure of the non rigid BF2OH molecule (difluoroboric acid) by combining high resolution infrared spectroscopy and ab initio.
Quantum Numbers.
Section 5.2 – Electron Arrangement in Atoms
4.3 ELECTRON CONFIGURATION
Presentation transcript:

Hyperfine Effects in Non-Rigid Molecules with 5 Equivalent Nuclei Laurent H. Coudert Laboratoire Inter-Universitaire des Systèmes Atmosphériques Créteil, France

Introduction This kind of coupling is displayed by non-rigid molecules such as H 5 + and PF 5. This kind of hyperfine structure has not yet been investigated. 5 atomes are exchanged by large amplitude motions

Overview 2. The effective hyperfine Hamiltonian. 1. The tunneling energy levels of H The hyperfine energy levels. 4. Symmetry adapted nuclear spin functions. 5. Results.

The 3 large amplitude motions of H 5  H 2 Rotation Isomerisation H 3  Rotation Kraemer, Spirko, and Bludsky, J. Molec. Spectrosc. 164, 500 (1994). There are 60 equilibrium configurations. Complete scrambling of all 5 hydrogen atoms. The symmetry group is G 240  S 5  {E, E*}

The tunneling sublevels of H 5  23 cm  1 Kraemer, Spirko, and Bludsky, J. Molec. Spectrosc. 164, 500 (1994).

The effective hyperfine Hamiltonian For A-type sublevels H = C S (I 1  I 2  I 3  I 4  I 5 )·J For G-, H-, or I-type sublevels H = C S (I 1  I 2  I 3  I 4  I 5 )·J + other terms

The hyperfine energy levels For J  5 and C S  1 MHz Pauli principle A 2  for H 5   A 1  for D 5 

Symmetry adapted nuclear spin functions 1 1 Soviet Maser Research, Acad. D. V. Skobel'tsyn, Wolf, Williams, and Weatherly, J. Chem. Phys. 47, 5101 (1967). 3 Bhattacharjee, Muenter, and Coudert, J. Chem. Phys. 97, 8850 (1992).  i, I  They are characterized by their symmetry species  i in S 5 and by I the total nuclear spin quantum number. Available for n  2, 3, 2 and 4 3

Symmetry-adapted nuclear spin functions

Hyperfine energy levels symmetry For J  5 and C S  1 MHz

Hyperfine pattern J = 5, A 2   4, A 2 

Hyperfine pattern J = 5, G 1   4, G 1 

Hyperfine pattern J = 5, H 2   4, H 2 

Hyperfine pattern J = 5  4

Building the functions 1 1 Jahn and Hope, Phys. Rev. 93, 318 (1954) and Ord-Smith, Phys. Rev. 94, 1227 (1954)

The symmetry group of H 5  G 240  S 5  { E, E* } S5S5