Chapter 12 Chemical Kinetics

Slides:



Advertisements
Similar presentations
Chemical Kinetics Reaction rate - the change in concentration of reactant or product per unit time.
Advertisements

CHEMICAL KINETICS CHAPTER 17, Kinetics Fall 2009, CHEM
AP Chapter 14.  Chemical kinetics is the area of chemistry that involves the rates or speeds of chemical reactions.  The more collisions there are between.
Chapter 14 Chemical Kinetics In kinetics we study the rate at which a chemical process occurs. Lecture Presentation © 2012 Pearson Education, Inc.
Chemical Kinetics Expression of rates.
Chpt 12 - Chemical Kinetics Reaction Rates Rate Laws Reaction Mechanisms Collision Theory Catalysis HW: Chpt 12 - pg , #s Due Fri Jan. 8.
CHAPTER 12: KINETICS Dr. Aimée Tomlinson Chem 1212.
Chapter 14 Chemical Kinetics *concerned with speed or rates of chemical reactions reaction rate- the speed at which a chemical reaction occurs reaction.
Overview of Ch Properties of Solutions Chapter 11.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemical Kinetics The area of chemistry that concerns reaction rates.
Reaction Rate Change in concentration of a reactant or product per unit time. [A] means concentration of A in mol/L; A is the reactant or product being.
Chapter 14 Chemical Kinetics
Chapter 12 Chemical Kinetics. Chapter 12 Table of Contents Copyright © Cengage Learning. All rights reserved Reaction Rates 12.2 Rate Laws: An.
Chemical Kinetics Unit 11.
8–1 John A. Schreifels Chemistry 212 Chapter 14-1 Chapter 14 Rates of Reaction.
Chemical Kinetics Chapter 14 AP Chemistry.
Chemical Kinetics Chapter 12.
Chemical Kinetics: Rates and Mechanisms of Chemical Reactions General Chemistry: An Integrated Approach Hill, Petrucci, 4 th Edition Mark P. Heitz State.
Ch 15 Rates of Chemical Reactions Chemical Kinetics is a study of the rates of chemical reactions. Part 1 macroscopic level what does reaction rate mean?
Chemical Kinetics Chapter 16. Kinetics Reaction Rates Factors affecting rate Quantitative rate expressions DeterminationFactors Models for Rates Reaction.
Chapter 15 Rates of Reaction.
Chemical Kinetics The area of chemistry that concerns reaction rates and reaction mechanisms.
Chapter 12 Chemical Kinetics. Chapter 12 Table of Contents Copyright © Cengage Learning. All rights reserved Reaction Rates 12.2 Rate Laws: An.
Chemical Kinetics AP Chem Unit 12.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Chapter 13.
Chapter 12 Chemical Kinetics.
Chapter 12 Chemical Kinetics. Chapter 12 Table of Contents Copyright © Cengage Learning. All rights reserved Reaction Rates 12.2 Rate Laws: An.
Chemical Kinetics 1 Chemical kinetics Plan 1. The subject of a chemical kinetics. 2. Classification of chemical reactions. 3. Determination methods of.
C h a p t e r 12 Chemical Kinetics. Reaction Rates01 Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant.
Chemical Kinetics Chapter 12. Chemical Kinetics The area of chemistry that concerns reaction rates.
1 Chemical Kinetics The area of chemistry that concerns reaction rates. The area of chemistry that concerns reaction rates.
Reaction Rate Change in concentration of a reactant or product per unit time. [A] means concentration of A in mol/L; A is the reactant or product being.
Chemical Kinetics Two Types of Rate Laws 1.Differential- Data table contains RATE AND CONCENTRATION DATA. Uses “table logic” or algebra to find the order.
Chapter 14 Chemical Kinetics. Review Section of Chapter 14 Test Net Ionic Equations.
Chemical Kinetics The area of chemistry that concerns reaction rates and reaction mechanisms.
Chapter 14 Chemical Kinetics. Review Section of Chapter 14 Test Net Ionic Equations.
Chemical Kinetics Kinetics – how fast does a reaction proceed?
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemistry FIFTH EDITION by Steven S. Zumdahl University of Illinois.
Chemical Kinetics Chapter 13 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Reaction Mechanism The series of steps by which a chemical reaction occurs. A chemical equation does not tell us how reactants become products - it is.
1 Chapter 12 – Chemical Kinetics 1.Second order Rate Law 2.Zero Order Rate Law 3.Reaction Mechanism 4.Model for Chemical Kinetics 5.Collision 6.Catalysis.
Chemical Kinetics. Kinetics The study of reaction rates. Spontaneous reactions are reactions that will happen - but we can’t tell how fast. (Spontaneity.
AP CHEMISTRY CHAPTER 12 KINETICS. 2 Chemical Kinetics Thermodynamics tells us if a reaction can occur Kinetics tells us how quickly the reaction occurs.
CHAPTER 12 AP CHEMISTRY. CHEMICAL KINETICS Speed or rate of reactions - Reaction Rate Change in concentration of a reactant or product per unit of time.
Kinetics Chapter 12. Reaction Rates  Kinetics is concerned with studying the reaction mechanism of a reaction.  An average reaction rate describes how.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemistry FIFTH EDITION by Steven S. Zumdahl University of Illinois.
Chemical Kinetics Chapter 13. Chemical Kinetics Thermodynamics – does a reaction take place? Kinetics – how fast does a reaction proceed? Reaction rate.
Chemical Kinetics By: Ms. Buroker. Chemical Kinetics Spontaneity is important in determining if a reaction occurs- but it doesn’t tell us much about the.
Chpt 12 - Chemical Kinetics Reaction Rates Rate Laws Reaction Mechanisms Collision Theory Catalysis HW set1: Chpt 12 - pg , # 22, 23, 28 Due Fri.
Chpt 12 - Chemical Kinetics Reaction Rates Rate Laws Reaction Mechanisms Collision Theory Catalysis HW set1: Chpt 12 - pg , # 22, 23, 28 Due Jan.
CHEMICAL KINETICS Chapter 12.
Kinetics Cartoon courtesy of NearingZero.net ©2011 University of Illinois Board of Trustees
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemical Kinetics The area of chemistry that concerns reaction rates.
Chemical Kinetics Chapter 13 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Kinetics Big Idea 4: Rates of chemical reactions are determined by details of the molecular collisions.
Chemical Kinetics The area of chemistry that concerns reaction rates and reaction mechanisms.
Kinetics. Reaction Rate  Reaction rate is the rate at which reactants disappear and products appear in a chemical reaction.  This can be expressed as.
Chapter 5 Rates of Chemical Reaction. 5-1 Rates and Mechanisms of Chemical Reactions 5-2 Theories of Reaction Rate 5-3 Reaction Rates and Concentrations.
Chemical Kinetics. Kinetics The study of reaction rates. Spontaneous reactions are reactions that will happen - but we can’t tell how fast. (Spontaneity.
Dr. Paul Charlesworth Michigan Technological University Dr. Paul Charlesworth Michigan Technological University C h a p t e rC h a p t e r C h a p t e.
Chapter 13 Chemical Kinetics CHEMISTRY. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of.
16-1 KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS.
AP CHEMISTRY Chapter 14 Chemical Kinetics Chemical Kinetics Study of how rapidly a reaction will occur. In addition to speed of reaction, kinetics.
Study of Reaction Rates
Study of Reaction Rates Grab your text book.
Chemical Kinetics Unit 10 – Chapter 12.
Reaction Rate Change in concentration of a reactant or product per unit time. [A] means concentration of A in mol/L; A is the reactant or product being.
Chemical Kinetics Lesson 2
Presentation transcript:

Chapter 12 Chemical Kinetics The area of chemistry that concerns reaction rates. Goals: To understand the steps (reaction mechanism) by which a reaction takes place. Allows us to find ways to facilitate the reaction

Reaction Rate Kinetics deals with the speed (rate) at which changes occur. The quantity that changes is the amount or concentration of a reactant or a product. Change in concentration (conc.) of a reactant or product per unit time.

Continued…. 2NO2(g)  2NO(g) + O2(g) The concentration of the reactant (NO2) decreases with time and the concentration of the products (NO and O2) increase with time. A change can be positive (increase) or negative (decrease) leading to a positive or negative reaction rate. However, we will always define the rate as a positive quantity.

Figure 12.1 Definition of Rate (Conc. vs.Time)

Continued…. The concentration of NO2 decreases with time, [NO2] is a negative quantity. The reaction rate is a positive quantity The concentration of reactants always decrease with time. The rate expression involving reactant will include a negative sign.

Continued…. 2NO2(g)  2NO(g) + O2(g) The rate can also be defined in terms of the products. In doing so we must take into account the coefficients in the balance equation for the reaction. Stoichiometry determines the relative rates. Rate of consumption = rate of production = 2(rate of production of NO2 of NO of O2)

Rate Laws 2NO2(g)  2NO(g) + O2(g) The reaction rate will depend on the concentrations of the reactants Rate = k[NO2]n The above expression shows how the rate depends on the concentration of reactants is called a rate law. k = rate constant (proportionality constant) n = rate order (integer or fraction including zero)

Types of Rate Laws Differential Rate Law: expresses how rate depends on concentration. Integrated Rate Law: expresses how concentration depends on time.

Continued…. We consider reactions where the reverse reaction is unimportant, rate laws involve only concentrations of reactants. Differential and integrated rate laws for a given reaction are related in a well-defined way, the experimental determination of either of the rate laws is sufficient. Experimental convenience dictates which types of rate law is determined experimentally.

Method of Initial Rates Initial Rate: the “instantaneous rate” just after the reaction begins. The initial rate is determined in several experiments using different initial concentrations.

Figure 12.3 A Plot of the Concentration of N2O5 as a Function of Time for the Reaction

Overall Reaction Order Sum of the order of each component in the rate law. rate = k[H2SeO3][H+]2[I]3 The overall reaction order is 1 + 2 + 3 = 6.

First-Order Rate Law ln[A] = kt + ln[A]o For aA  Products in a 1st-order reaction, Integrated first-order rate law is ln[A] = kt + ln[A]o

Continued…. ln[A] = -kt + ln[A]o The equation shows how the concentration of A depends on time. If the initial concentration of A and the rate constant k are known, the concentration of A at any time can be calculated. The above equation is the equation of straight line of the form y = mx + b, where a plot of y versus x is a straight line with slope m and intercept b.

Continued…. The reaction is first order in A if a plot of ln[A] versus t is a straight line. The integrated rate law for a first order reaction can also be expressed in terms of a ratio of [A] and [A]o as follow:

Figure 12.4 A Plot of In(N2O5) Versus Time

Half-Life of a First-Order Reaction The time required for a reactant to reach half its original concentration is called the half-life of a reactant and is designated by the symbol t1/2. t1/2 = half-life of the reaction, k = rate constant For a first-order reaction, the half-life does not depend on concentration.

Figure 12.5 A Plot of (N2O5) Versus Time for the Decomposition Reaction of N2O5

Second-Order Rate Law For aA  products in a second-order reaction, Integrated rate law is A plot of 1/[A] versus t will produce a straight line with a slope equal to k The above equation shows how [A] depends on time and can be used to calculate [A] at any time t, provided k and [A]o are known

Half-Life of a Second-Order Reaction When one half-life of the second order reaction has elapsed (t = t1/2), by definition, [A] = [A]o/2 then the integrated rate law becomes t1/2 = half-life of the reaction, k = rate constant, Ao = initial concentration of A The half-life is dependent upon the initial concentration.

Figure 12.6 (a) A Plot of In(C4H6) Versus t (b) A Plot of 1/(C4H6) Versus t

Zero-Order Rate Laws The rate law for a zero-order reaction is Rate = k[A]o = k(1) = k For a zero-order reaction, the rate is constant. It does not change with concentration as it does for first-order or second-order reactions. The integrated rate law for a zero-order reaction is [A] = -kt + [A]o

In this case a plot of [A] versus t gives a straight line of slope –k. continued… [A] = -kt + [A]o In this case a plot of [A] versus t gives a straight line of slope –k. [A] = [A]o/2, when t = t1/2 [A]o/2 =-kt1/2 + [A]o Solving for t1/2 gives, t1/2 = [A]o/2k

Figure 12.7 A Plot of (A) Versus t for a Zero-Order Reaction

Rate Laws for Reactions with More Than One Reactant A + B + C  Product Rate = k[A]n[B]m[C]p For such reaction, concentration of one reactant remain small compared with the concentrations of the others. So the rate law reduce to Rate = k`[A]n Where, k` = k[B]m[C]op and [B]o>>[A]o and [C]o>>[A]o The value of n can be obtained by determining whether a plot of [A] versus t is linear (n = 0), a plot of ln[A] versus t is linear (n = 1), or a plot of 1/[A] versus t is linear (n = 2). The value of k` is determined from the slope.

A Summary 1. Simplification: Conditions are set such that only forward reaction is important. 2. Two types of rate law: differential rate law and integrated rate law 3. Which type? Depends on the type of data collected - differential and integrated forms can be interconverted.

A Summary (continued) 4. Most common: method of initial rates. 5. Concentration v. time: used to determine integrated rate law, often graphically. 6. For several reactants: choose conditions under which only one reactant varies significantly (pseudo first-order conditions).

Reaction Mechanism The series of steps by which a chemical reaction occurs. A chemical equation does not tell us how reactants become products - it is a summary of the overall process. The purpose for studying kinetics is to learn as much as possible about the steps involved in a reaction.

Reaction Mechanism (continued) The reaction has many steps in the reaction mechanism. The rate law for this reaction is known from experiment to be Rate = k[NO2]2 The balanced equation tells us the reactants, the products, the stoichiometry. NO2(g) + NO2(g) NO3(g) + NO(g) NO3(g) + CO(g) NO2(g) + CO2(g)

Often Used Terms Intermediate: formed in one step and used up in a subsequent step and so is never seen as a product. (neither a reactant nor a product) Molecularity: the number of species that must collide to produce the reaction indicated by that step. Elementary Step: A reaction whose rate law can be written from its molecularity. uni, bi and termolecular The sum of the elementary steps must give the overall balanced equation The mechanism must agree with the experimentally determined rate law.

Rate-Determining Step Multistep reaction often have one step that is much slower than all the others. Reactants can become products only as fast as they can get through this slowest step. The overall reaction can be no faster than the slowest or rate determining step. In a multistep reaction, it is the slowest step. It therefore determines the rate of reaction. Overall rate = k1[NO2]2

Collision Model Key Idea: Molecules must collide to react. However, only a small fraction of collisions produces a reaction. Why? Arrhenius: An activation energy (threshold energy) must be overcome to produce a chemical reaction. 2BrNO(g)  2NO(g) + Br2(g)

Figure 12.11 Change in Potential Energy

Arrhenius Equation Collisions must have enough energy to produce the reaction (must equal or exceed the activation energy). Orientation of reactants must allow formation of new bonds necessary to produce products.

Figure 12.13 Several Possible Orientations for a Collision Between Two BrNO Molecules

Arrhenius Equation (continued) k = rate constant, A = frequency factor Ea = activation energy, T = temperature R = gas constant ln(k) = -Ea/R(1/T) + ln(A) A plot of ln(k) versus 1/T gives a straight line, slope = -Ea/R and intercept = ln(A)

Figure 12.14 Plot of In(k) Versus 1/T for the Reaction 2N2O5(g) ® 4NO2(g) + O2(g)

Arrhenius Equation (continued) Activation energy (Ea) can also be calculated from the values of k at only two temperatures At temperature T1, where the rate constant is k1, At temperature T2, where the rate constant is k2, Ea can be calculated from k1 and k2 at temperature T1 and T2

Catalysis Catalyst: A substance that speeds up a reaction without being consumed it self. Enzyme: A large molecule (usually a protein) that catalyzes biological reactions. Homogeneous catalyst: Present in the same phase as the reacting molecules. Heterogeneous catalyst: Present in a different phase than the reacting molecules.

Figure 12.15 Energy Plots for a Catalyzed and an Uncatalyzed Pathway for a Given Reaction