II. Stoichiometry in the Real World Limiting Reagents and % yield (p. 268-378) Stoichiometry – Ch. 12.

Slides:



Advertisements
Similar presentations
II. Stoichiometry in the Real World (p. 379 – 388) Stoichiometry – Ch. 11.
Advertisements

Percent Yield and Limiting Reactants
Mole Review 1.) Calculate the number of moles in 60.4L of O2. 2.) How many moles are there in 63.2g of Cl2? 1 mol O2 60.4L O2 = 2.7 mol O2 22.4L O2 1mol.
Limiting Reagents Chemistry Notes. What are limiting reagents? Up until now, we have assumed that all reactants are used up in a reaction. In actuality,
Stoichiometry Continued…
II. Stoichiometry in the Real World (p ) Stoichiometry – Ch. 9.
Stoichiometry Ratios The stoichiometric coefficients in a balanced chemical reaction can be used to determine the mole relationships between any combination.
Mole Review 1.) Calculate the number of moles in 60.4L of O2. 2.) How many moles are there in 63.2g of Cl2? 1 mol O2 60.4L O2 = 2.7 mol O2 22.4L O2 1mol.
Limiting Reactants and Percent Yield
Chapter 9 - Section 3 Suggested Reading: Pages
II. Stoichiometry in the Real World * Limiting Reagents
Unit 08 – Moles and Stoichiometry I. Molar Conversions.
Stoichiometric Calculations (p )
Lecturer: Amal Abu- Mostafa.  Available Ingredients ◦ 4 slices of bread ◦ 1 jar of peanut butter ◦ 1/2 jar of jelly Limiting Reactant Limiting Reactant.
Limiting/Excess Reactants and Percent Yield
II. Gas Stoichiometry. 1 mol of a gas=___ L at STP A. Molar Volume at STP S tandard T emperature & P ressure 0°C and 1 atm.
Chemical Quantities – Ch. 9.
Limiting Reagent u The limiting reagent is the reactant you run out of first. u The excess reagent is the one you have left over. u The limiting reagent.
Limiting Reagents and Percent Yield
Stoichiometric Calculations
Unit 8: Percent Yield Calculations
Chapter 12 Stoichiometry The study of the quantitative, or measurable, relationships that exist in chemical formulas and chemical reactions.Stoichiometry.
When copper (II) reacts with silver nitrate, the number of grams of copper required to produce 432 grams of silver is:Warm-Up CuAgNO 3 Ag22+Cu(NO 3 ) 2.
Chapter 12 Cookies? u When baking cookies, a recipe is usually used, telling the exact amount of each ingredient If you need more, you can double or.
Percent Yield and Limiting Reactants Advanced Chemistry Ms. Grobsky.
Stoichiometric Calculations Stoichiometry – Ch. 9.
Stoichiometric Calculations Start Your Book Problems NOW!! Stoichiometry.
Stoichiometric Calculations Stoichiometry – Ch. 8.
The Study of Stoichiometry I. Stoichiometric Calculations.
I. I.Stoichiometric Calculations Topic 9 Stoichiometry Topic 9 Stoichiometry.
C. Johannesson I. I.Stoichiometric Calculations (p ) Stoichiometry – Ch. 9.
Limiting Reagents & Percent Yield Chapter 9 Notes Part III.
C. Johannesson II. Stoichiometry in the Real World (p ) Stoichiometry – Ch. 9.
II. Limiting Reactants Stoichiometry – 3.7. A. Limiting Reactants b Available Ingredients 4 slices of bread 1 jar of peanut butter 1/2 jar of jelly b.
II. Stoichiometry in the Real World Stoichiometry – Ch. 11.
II. Stoichiometry in the Real World Stoichiometry – Unit. 10.
II. Stoichiometry in the Real World Stoichiometry.
I. I.Stoichiometric Calculations Topic 6 Stoichiometry Topic 6 Stoichiometry.
Stoichiometry Warmup I have 1 mole of CO 2 gas at STP. How many grams of CO 2 do I have? How many Liters of CO 2 do I have? How many molecules of CO 2.
I. I.Stoichiometric Calculations Stoichiometry – Ch. 10.
I. I.Stoichiometric Calculations Stoichiometry. A. Proportional Relationships b I have 5 eggs. How many cookies can I make? 3/4 c. brown sugar 1 tsp vanilla.
Limiting Reactants, Theoretical Yield, and % Yield.
Review Mg + 2 HCl  MgCl 2 + H 2 How many Liters of H 2 would be produced with 56 g Mg?
Stoichiometry: Limiting Reactants Chapter 9 Lesson 3.
Stoichiometry – Ch What would be produced if two pieces of bread and a slice of salami reacted together? + ?
Stoichiometry in the Real World Stoichiometry – Ch. 11.
Let’s look at the butane reaction once more: 2C 4 H O 2 → 8CO H 2 O What do the coefficients represent? Stoichiometry is the use of these.
II. Stoichiometry in the Real World (p )
Finding the Amount of Excess Reactant Left Over
II. Stoichiometry in the Real World
Stoichiometric Calculations
Unit 8: Stoichiometry: Part 1
Stoichiometry.
Stoichiometric Calculations (p )
Ch. 9: Calculations from Chemical Equations
Chapter 12 Review.
Chapter 12 Review.
Agenda: 1/13/2017 Go over the procedure for the Molarity Lab
Finding the Amount of Excess Reactant Left Over
Stoichiometry in the Real World
II. Stoichiometry in the Real World (p )
Stoichiometric Calculations (p )
II. Stoichiometry in the Real World (p. 368 – 375)
II. Stoichiometry in the Real World (p )
Stoichiometry.
II. Stoichiometry in the Real World
Limiting Reactants and Percent Yield
STOICHIOMETRY!!!!.
Limiting/Excess Reactants and Percent Yield
Stoichiometric Calculations (p )
Presentation transcript:

II. Stoichiometry in the Real World Limiting Reagents and % yield (p ) Stoichiometry – Ch. 12

A. Limiting Reactants b Available Ingredients 4 slices of bread 1 jar of peanut butter 1/2 jar of jelly b Limiting Reactant bread b Excess Reactants peanut butter and jelly

A. Limiting Reactants b Limiting Reactant used up in a reaction determines the amount of product b Excess Reactant reactant left over… cheaper & easier to recycle, added to ensure that the other reactant is completely used up

A. Limiting Reactants 1. Write a balanced equation. 2. For each reactant, calculate the amount of product formed. 3. Smaller answer indicates: limiting reactant amount of product

A. Limiting Reactants b 79.1 g of zinc react with 0.90 L of 2.5M HCl. Identify the limiting and excess reactants. How many liters of hydrogen are formed at STP? Zn + 2HCl  ZnCl 2 + H g ? L 82.0g

Summary of Limiting Reactant b Do stoichiometry twice to go from each reactant to same product Now you know LR and actual amount produced b Do stoichio once more from LR to ER to determine amount used…then subtract

A. Limiting Reactants 79.1 g Zn 1 mol Zn g Zn = 27.1 L H 2 1 mol H 2 1 mol Zn 22.4 L H 2 1 mol H 2 Zn + 2HCl  ZnCl 2 + H g ? L 82.0g

A. Limiting Reactants 22.4 L H 2 1 mol H g 1 mol HCl 36.5g HCl = 25 L H 2 1 mol H 2 2 mol HCl Zn + 2HCl  ZnCl 2 + H g ? L 82.0

A. Limiting Reactants Zn  27.1 L H 2 HCl  25 L H 2 Limiting reactant: HCl Excess reactant: Zn Product Formed: 25 L H 2 left over zinc Choose smallest #

How many grams of excess reactant remain? b Use stoichiometry to convert from L.R. (HCl) to amount of E.R. (Zinc) USED..getting… b Now subtract amount ER (73.5g) used from starting ER (79.1g) to get amount remaining ( ) = 73.5g Zn used 5.6grams of Zinc remaining

B. Percent Yield calculated on paper measured in lab

B. Percent Yield b When 45.8 g of K 2 CO 3 react with excess HCl, 46.3 g of KCl are formed. Calculate the theoretical and % yields of KCl. K 2 CO 3 + 2HCl  2KCl + H 2 O + CO g? g actual: 46.3 g

B. Percent Yield 45.8 g K 2 CO 3 1 mol K 2 CO g K 2 CO 3 = 49.4 g KCl 2 mol KCl 1 mol K 2 CO g KCl 1 mol KCl K 2 CO 3 + 2HCl  2KCl + H 2 O + CO g? g actual: 46.3 g Theoretical Yield:

B. Percent Yield Theoretical Yield = 49.4 g KCl % Yield = 46.3 g 49.4 g  100 = 93.7% K 2 CO 3 + 2HCl  2KCl + H 2 O + CO g49.4 g actual: 46.3 g