1 Chemical Kinetics Chapter 15 An automotive catalytic muffler.

Slides:



Advertisements
Similar presentations
KINETICS -REACTION RATES
Advertisements

Chemical Kinetics Chapter 15
Goals: Dependence of rate on conc. Distinguish different rates How T affects rate How catalysts affect rate Determine simple mechanisms Suggested Problems:
Kinetics Quick Review. Radioactive Decay and Kinetics.
REACTION RATES BY JOANNE SWANSON
CHEMICAL KINETICS Goal of kinetics experiment is to measure concentration of a species at particular time during a rxn so a rate law can be determined.
Reaction Rates (Chapter 13)
Chapter 14 Chemical Kinetics In kinetics we study the rate at which a chemical process occurs. Lecture Presentation © 2012 Pearson Education, Inc.
RATES OF REACTION SUROVIEC SPRING 2014 Chapter 13.
Nanochemistry NAN 601 Dr. Marinella Sandros Lecture 5: Kinetics
Chapter 13 Chemical Kinetics
Principles of Reactivity: Chemical Kinetics
Kinetics Chapter 15 Web-site:
Chapter 14 Chemical Kinetics.
Rate Laws Example: Determine the rate law for the following reaction given the data below. H 2 O 2 (aq) + 3 I - (aq) + 2H + (aq)  I 3 - (aq) + H 2 O (l)
Why do some reactions happen and others don’t? Are the products more stable than the reactants? Thermodynamics Does the reaction go at a reasonable rate?
1 Kinetics Chapter The study of rxn rates Rxn rate =  concentration/  time Rxn rate =  concentration/  time Example: Example: 2N 2 O 5  4NO.
1 © 2006 Brooks/Cole - Thomson Chemistry and Chemical Reactivity 6th Edition John C. Kotz Paul M. Treichel Gabriela C. Weaver CHAPTER 15 Principles of.
Chapter 14 Chemical Kinetics
Chemical Kinetics Chapter 16. Chemical Kinetics Thermodynamics – does a reaction take place? Kinetics – how fast does a reaction proceed? Reaction rate.
Chemical Kinetics Chapter 15 H 2 O 2 decomposition in an insect H 2 O 2 decomposition catalyzed by MnO 2.
Chemical Kinetics: Rates and Mechanisms of Chemical Reactions General Chemistry: An Integrated Approach Hill, Petrucci, 4 th Edition Mark P. Heitz State.
Ch 15 Rates of Chemical Reactions Chemical Kinetics is a study of the rates of chemical reactions. Part 1 macroscopic level what does reaction rate mean?
Chapter 14 Chemical Kinetics. What does ‘kinetics’ mean?
Chapter 15 - Chemical Kinetics Objectives: 1.Determine rates of reactions from graphs of concentration vs. time. 2.Recall the conditions which affect the.
Kinetics (Ch 15) 1. For the reaction: A + 3B  2C a. Express the rate in terms of concentrations of A, B and C. b. The following data was collected for.
Chemical Kinetics CHAPTER 14 Part B
Chapter 14 Kinetics Chapter 10 provided an introduction to kinetics and equilibrium. In this chapter we expand the quantitative treatment of chemical kinetics.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Chapter 13.
Things to know…….  Rate depends on temperature  Temp is the avg. KE  Order depends on rxn mechanism  Rate is determined by the slow step  Temp affects.
Chemical Kinetics Unit 11. Chemical Kinetics Chemical equations do not give us information on how fast a reaction goes from reactants to products. KINETICS:
Chemical Kinetics 1 Chemical kinetics Plan 1. The subject of a chemical kinetics. 2. Classification of chemical reactions. 3. Determination methods of.
1 © 2009 Brooks/Cole - Cengage Chemical Kinetics Chapter 12 H 2 O 2 decomposition in an insect H 2 O 2 decomposition catalyzed by MnO 2.
1 Chemical Kinetics Chapter 11 H 2 O 2 decomposition in an insect H 2 O 2 decomposition catalyzed by MnO 2.
AP Chemistry Chapter 14 Jeopardy Jennie L. Borders.
1 PRINCIPLES OF REACTIVITY: CHEMICAL KINETICS CHAPTER all bold numbered problems.
Chemical Kinetics H 2 O 2 decomposition in an insect H 2 O 2 decomposition catalyzed by MnO 2 Day 2: Rate equations.
1 © 2006 Brooks/Cole - Thomson Chemistry and Chemical Reactivity 6th Edition John C. Kotz Paul M. Treichel Gabriela C. Weaver CHAPTER 15 Principles of.
Rate Expression VIDEO AP 6.1. Collision Theory: When two chemicals react, their molecules have to collide with each other with proper energy and orientation.
BLB 11 th Chapter Will the reaction occur? Ch. 5, How fast will the reaction occur? Ch How far will the reaction proceed? Ch. 15.
1 Chemical Kinetics: Rates of Reactions Chapter 13 Svante A. Arrhenius * Developed concept of activation energy; asserted solutions of salts.
Chemical Kinetics Kinetics – how fast does a reaction proceed?
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemistry FIFTH EDITION by Steven S. Zumdahl University of Illinois.
Title: Lesson 3 Rate Law and Reaction Order Learning Objectives: – Know that rate law can only be derived from experimental data – Understand the concept.
Chemistry 102(001) Fall 2012 CTH :00-11:15 am
1 Chemical Kinetics Chapter Chemical Kinetics Kinetics is the study of how fast chemical reactions occur and how they occur. There are 4 important.
Chapter 14 Chemical Kinetics Chemical Kinetics CH 141.
Chemical Kinetics. Kinetics The study of reaction rates. Spontaneous reactions are reactions that will happen - but we can’t tell how fast. (Spontaneity.
AP CHEMISTRY CHAPTER 12 KINETICS. 2 Chemical Kinetics Thermodynamics tells us if a reaction can occur Kinetics tells us how quickly the reaction occurs.
John C. Kotz State University of New York, College at Oneonta John C. Kotz Paul M. Treichel John Townsend Chapter 15.
BLB 11 th Chapter Will the reaction occur? Ch. 5, How fast will the reaction occur? Ch How far will the reaction proceed? Ch. 15.
1 KINETICS — the study of REACTION RATES and their relation to the way the reaction proceeds, i.e., its MECHANISM.KINETICS — the study of REACTION RATES.
Second and Zero rate orders Chapter 14 part IV. Second Order Rate Laws  Butadiene forms its dimer  2C 4 H 6 (g) - > C 8 H 12 (g)
Chemical Kinetics Chapter 13 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chemical Kinetics Thermodynamics – does a reaction take place?
Chemical Kinetics Sorry not all reactions are instantaneous!
Chemical Kinetics Chapter 13
Chapter 14 Chemical Kinetics. Reaction Rates Combustion of propane (C 3 H 8 ) Rusting of iron (Fe 2 O 3 ) Rate at which reactants disappear / products.
11.1: Meaning of Reaction Rates 1 Define Reaction Rates How to Express Reaction Rates Can You Write an Expression Rate Concentration vs. Time Curve Determining.
KINETICS. Studies the rate at which a chemical process occurs. a A + b B c C + d D v = - dc/dt = k [A]x [B]y Besides information about the speed at which.
AP Chem Kinetics integrated rate laws, half life.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemistry FIFTH EDITION by Steven S. Zumdahl University of Illinois.
Prepared by PhD Halina Falfushynska. C(s, diamond) C(s, graphite) ΔH ° rxn = Is the reaction favorable?
Chemical Kinetics Chapter 13 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Rates of Chemical Reactions CHEMICAL KINETICS. The rate of a reaction is measured by looking at the change in concentration over time. RATES OF CHEMICAL.
Chemical Kinetics. Kinetics The study of reaction rates. Spontaneous reactions are reactions that will happen - but we can’t tell how fast. (Spontaneity.
Chapter 13 Chemical Kinetics CHEMISTRY. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of.
16-1 KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS.
slideshttp:\\academicstaff.kmu.ac.ir\aliasadipour1.
Presentation transcript:

1 Chemical Kinetics Chapter 15 An automotive catalytic muffler.

2 We can use thermodynamics to tell if a reaction is product or reactant favored.We can use thermodynamics to tell if a reaction is product or reactant favored. But this gives us no info on HOW FAST reaction goes from reactants to products.But this gives us no info on HOW FAST reaction goes from reactants to products. KINETICS — the study of REACTION RATES and their relation to the way the reaction proceeds, i.e., its MECHANISM.KINETICS — the study of REACTION RATES and their relation to the way the reaction proceeds, i.e., its MECHANISM. We can use thermodynamics to tell if a reaction is product or reactant favored.We can use thermodynamics to tell if a reaction is product or reactant favored. But this gives us no info on HOW FAST reaction goes from reactants to products.But this gives us no info on HOW FAST reaction goes from reactants to products. KINETICS — the study of REACTION RATES and their relation to the way the reaction proceeds, i.e., its MECHANISM.KINETICS — the study of REACTION RATES and their relation to the way the reaction proceeds, i.e., its MECHANISM. Chemical Kinetics Chapter 15

3 Thermodynamics or Kinetics Reactions can be one of the following: 1.Not thermodynamically favored (reactant favored) 2.Thermodynamically favored (product favored), but not kinetically favored (slow) 3.Thermodynamically favored (product favored) and kinetically favored (fast)

4 Thermodynamics or Kinetics Not thermodynamically favored (reactant favored) Sand (SiO 2 ) will not decompose into Si and O 2

5 Thermodynamics or Kinetics Thermodynamically favored (product favored), but not kinetically favored (slow) Diamonds will turn into graphite, but the reaction occurs very slowly

6 Thermodynamics or Kinetics Thermodynamic ally favored (product favored) and kinetically favored (fast) Burning of paper in air will turn to ash very quickly

7 Reaction Mechanisms The sequence of events at the molecular level that control the speed and outcome of a reaction. Br from biomass burning destroys stratospheric ozone. (See R.J. Cicerone, Science, volume 263, page 1243, 1994.) Step 1:Br + O 3 ---> BrO + O 2 Step 2:Cl + O 3 ---> ClO + O 2 Step 3:BrO + ClO + light ---> Br + Cl + O 2 NET: 2 O 3 ---> 3 O 2 The sequence of events at the molecular level that control the speed and outcome of a reaction. Br from biomass burning destroys stratospheric ozone. (See R.J. Cicerone, Science, volume 263, page 1243, 1994.) Step 1:Br + O 3 ---> BrO + O 2 Step 2:Cl + O 3 ---> ClO + O 2 Step 3:BrO + ClO + light ---> Br + Cl + O 2 NET: 2 O 3 ---> 3 O 2

8 Reaction rate = change in concentration of a reactant or product with time.Reaction rate = change in concentration of a reactant or product with time. Know about initial rate, average rate, and instantaneous rate. See Screen 15.2.Know about initial rate, average rate, and instantaneous rate. See Screen Reaction Rates Section 15.1 Reaction Rates Section 15.1

9

10 Determining a Reaction Rate Blue dye is oxidized with bleach. Its concentration decreases with time. The rate — the change in dye conc with time — can be determined from the plot. Blue dye is oxidized with bleach. Its concentration decreases with time. The rate — the change in dye conc with time — can be determined from the plot. Dye Conc Time

11 Concentrations and physical state of reactants and products (Screens 15.3 and 15.4)Concentrations and physical state of reactants and products (Screens 15.3 and 15.4) Temperature (Screen 15.11)Temperature (Screen 15.11) Catalysts (Screen 15.14)Catalysts (Screen 15.14) Factors Affecting Rates Section 15.2

12 ConcentrationsConcentrations Factors Affecting Rates Section 15.2 Rate with 0.3 M HCl Rate with 6.0 M HCl

13 Physical state of reactantsPhysical state of reactants Factors Affecting Rates Section 15.2

14 Catalysts: catalyzed decomp of H 2 O 2 2 H 2 O 2 --> 2 H 2 O + O 2 2 H 2 O 2 --> 2 H 2 O + O 2 Factors Affecting Rates Section 15.2

15 TemperatureTemperature Factors Affecting Rates Section 15.2

16 Concentrations and Rates To postulate a reaction mechanism, we study reaction rate andreaction rate and its concentration dependenceits concentration dependence To postulate a reaction mechanism, we study reaction rate andreaction rate and its concentration dependenceits concentration dependence

17 Concentrations and Rates Take reaction where Cl - in cisplatin [Pt(NH 3 ) 2 Cl 3 ] is replaced by H 2 O

18 Concentrations and Rates Rate of reaction is proportional to [Pt(NH 3 ) 2 Cl 2 ] We express this as a RATE LAW Rate of reaction = k [Pt(NH 3 ) 2 Cl 2 ] where k = rate constant k is independent of conc. but increases with T Rate of reaction is proportional to [Pt(NH 3 ) 2 Cl 2 ] We express this as a RATE LAW Rate of reaction = k [Pt(NH 3 ) 2 Cl 2 ] where k = rate constant k is independent of conc. but increases with T

19 Concentrations, Rates, and Rate Laws In general, for a A + b B ---> x X with a catalyst C Rate = k [A] m [B] n [C] p The exponents m, n, and p are the reaction orderare the reaction order can be 0, 1, 2 or fractionscan be 0, 1, 2 or fractions must be determined by experiment!!!must be determined by experiment!!! In general, for a A + b B ---> x X with a catalyst C Rate = k [A] m [B] n [C] p The exponents m, n, and p are the reaction orderare the reaction order can be 0, 1, 2 or fractionscan be 0, 1, 2 or fractions must be determined by experiment!!!must be determined by experiment!!!

20 Interpreting Rate Laws Rate = k [A] m [B] n [C] p If m = 1, rxn. is 1st order in AIf m = 1, rxn. is 1st order in A Rate = k [A] 1 If [A] doubles, then rate goes up by factor of ? If [A] doubles, then rate goes up by factor of ? If m = 2, rxn. is 2nd order in A.If m = 2, rxn. is 2nd order in A. Rate = k [A] 2 Rate = k [A] 2 Doubling [A] increases rate by ? If m = 0, rxn. is zero order.If m = 0, rxn. is zero order. Rate = k [A] 0 Rate = k [A] 0 If [A] doubles, rate ? Rate = k [A] m [B] n [C] p If m = 1, rxn. is 1st order in AIf m = 1, rxn. is 1st order in A Rate = k [A] 1 If [A] doubles, then rate goes up by factor of ? If [A] doubles, then rate goes up by factor of ? If m = 2, rxn. is 2nd order in A.If m = 2, rxn. is 2nd order in A. Rate = k [A] 2 Rate = k [A] 2 Doubling [A] increases rate by ? If m = 0, rxn. is zero order.If m = 0, rxn. is zero order. Rate = k [A] 0 Rate = k [A] 0 If [A] doubles, rate ?

21 Deriving Rate Laws Derive rate law and k for CH 3 CHO(g) ---> CH 4 (g) + CO(g) from experimental data for rate of disappearance of CH 3 CHO Expt. [CH 3 CHO]Disappear of CH 3 CHO (mol/L)(mol/Lsec) Derive rate law and k for CH 3 CHO(g) ---> CH 4 (g) + CO(g) from experimental data for rate of disappearance of CH 3 CHO Expt. [CH 3 CHO]Disappear of CH 3 CHO (mol/L)(mol/Lsec)

22 Deriving Rate Laws Rate of rxn = k [CH 3 CHO] 2 Here the rate goes up by ______ when initial conc. doubles. Therefore, we say this reaction is _________________ order. Now determine the value of k. Use expt. #3 data— mol/Ls = k (0.30 mol/L) 2 k = 2.0 (L / mols) k = 2.0 (L / mols) Using k you can calc. rate at other values of [CH 3 CHO] at same T. Rate of rxn = k [CH 3 CHO] 2 Here the rate goes up by ______ when initial conc. doubles. Therefore, we say this reaction is _________________ order. Now determine the value of k. Use expt. #3 data— mol/Ls = k (0.30 mol/L) 2 k = 2.0 (L / mols) k = 2.0 (L / mols) Using k you can calc. rate at other values of [CH 3 CHO] at same T.

23 Concentration/Time Relations Need to know what conc. of reactant is as function of time. Consider FIRST ORDER REACTIONS For 1st order reactions, the rate law is - ( [A] / time) = k [A] For 1st order reactions, the rate law is - (  [A] /  time) = k [A] Need to know what conc. of reactant is as function of time. Consider FIRST ORDER REACTIONS For 1st order reactions, the rate law is - ( [A] / time) = k [A] For 1st order reactions, the rate law is - (  [A] /  time) = k [A]

24 Concentration/Time Relations Integrating - ( [A] / time) = k [A], we get Integrating - (  [A] /  time) = k [A], we get

25 Concentration/Time Relations Integrating - ( [A] / time) = k [A], we get Integrating - (  [A] /  time) = k [A], we get [A] / [A] 0 =fraction remaining after time t has elapsed.

26 Concentration/Time Relations Integrating - ( [A] / time) = k [A], we get Integrating - (  [A] /  time) = k [A], we get [A] / [A] 0 =fraction remaining after time t has elapsed. Called the integrated first-order rate law.

27 Concentration/Time Relations Sucrose decomposes to simpler sugars Rate of disappearance of sucrose = k [sucrose] k = 0.21 hr -1 Initial [sucrose] = M How long to drop 90% (to M)? Sucrose decomposes to simpler sugars Rate of disappearance of sucrose = k [sucrose] k = 0.21 hr -1 Initial [sucrose] = M How long to drop 90% (to M)? Sucrose

28 Concentration/Time Relationships Rate of disappear of sucrose = k [sucrose], k = 0.21 hr -1. If initial [sucrose] = M, how long to drop 90% or to M? Use the first order integrated rate law

29 Concentration/Time Relationships Rate of disappear of sucrose = k [sucrose], k = 0.21 hr -1. If initial [sucrose] = M, how long to drop 90% or to M? Use the first order integrated rate law

30 Concentration/Time Relationships Rate of disappear of sucrose = k [sucrose], k = 0.21 hr -1. If initial [sucrose] = M, how long to drop 90% or to M? Use the first order integrated rate law ln (0.100) = = - (0.21 hr -1 ) time

31 Concentration/Time Relationships Rate of disappear of sucrose = k [sucrose], k = 0.21 hr -1. If initial [sucrose] = M, how long to drop 90% or to M? Use the first order integrated rate law ln (0.100) = = - (0.21 hr -1 ) time time = 11 hours

32 Using the Integrated Rate Law The integrated rate law suggests a way to tell if a reaction is first order based on experiment. 2 N 2 O 5 (g) ---> 4 NO 2 (g) + O 2 (g) Rate = k [N 2 O 5 ] Time (min)[N 2 O 5 ] 0 (M) ln [N 2 O 5 ]

33 Using the Integrated Rate Law 2 N 2 O 5 (g) ---> 4 NO 2 (g) + O 2 (g) Rate = k [N 2 O 5 ] Data of conc. vs. time plot do not fit straight line.

34 Using the Integrated Rate Law 2 N 2 O 5 (g) ---> 4 NO 2 (g) + O 2 (g) Rate = k [N 2 O 5 ] Data of conc. vs. time plot do not fit straight line. Plot of ln [N 2 O 5 ] vs. time is a straight line!

35 Using the Integrated Rate Law All 1st order reactions have straight line plot for ln [A] vs. time. (2nd order gives straight line for plot of 1/[A] vs. time) Plot of ln [N 2 O 5 ] vs. time is a straight line! Eqn. for straight line: y = ax + b y = ax + b Plot of ln [N 2 O 5 ] vs. time is a straight line! Eqn. for straight line: y = ax + b y = ax + b

36 Graphical Methods for Determining Reaction Order and Rate Constant Zero-order Straight line plot of [A] t vs. t Slope is –k (mol/L*s)

37 Graphical Methods for Determining Reaction Order and Rate Constant First-order Straight line plot of ln[A] t vs. t Slope is – k (s -1 )

38 Graphical Methods for Determining Reaction Order and Rate Constant Second-order Straight line plot of 1/[A] t vs t Slope is k (L/mol*s)

39 Half-Life Section 15.4 and Screen 15.8 HALF-LIFE is the time it takes for 1/2 a sample is disappear. For 1st order reactions, the concept of HALF- LIFE is especially useful.

40 Reaction is 1st order decomposition of H 2 O 2.Reaction is 1st order decomposition of H 2 O 2. Half-LifeHalf-Life

41 Half-LifeHalf-Life Reaction after 654 min, 1 half-life.Reaction after 654 min, 1 half-life. 1/2 of the reactant remains.1/2 of the reactant remains.

42 Half-LifeHalf-Life Reaction after 1306 min, or 2 half-lives.Reaction after 1306 min, or 2 half-lives. 1/4 of the reactant remains.1/4 of the reactant remains.

43 Half-LifeHalf-Life Reaction after 3 half-lives, or 1962 min.Reaction after 3 half-lives, or 1962 min. 1/8 of the reactant remains.1/8 of the reactant remains.

44 Half-LifeHalf-Life Reaction after 4 half-lives, or 2616 min.Reaction after 4 half-lives, or 2616 min. 1/16 of the reactant remains.1/16 of the reactant remains.

45 Half-Life Section 15.4 and Screen 15.8 Sugar is fermented in a 1st order process (using an enzyme as a catalyst). Sugar is fermented in a 1st order process (using an enzyme as a catalyst). sugar + enzyme --> products sugar + enzyme --> products Rate of disappear of sugar = k[sugar] k = 3.3 x sec -1 What is the half-life of this reaction?

46 Half-Life Section 15.4 and Screen 15.8 Solution [A] / [A] 0 = 1/2 when t = t 1/2 Therefore, ln (1/2) = - k t 1/ = - k t 1/2 t 1/2 = / k t 1/2 = / k So, for sugar, t 1/2 = / k = 2100 sec = 35 min Rate = k[sugar] and k = 3.3 x sec -1. What is the half- life of this reaction?

47 Half-Life Section 15.4 and Screen 15.8 Solution 2 hr and 20 min = 4 half-lives Half-life Time ElapsedMass Left 1st35 min5.00 g 2nd g 3rd g 4th g Rate = k[sugar] and k = 3.3 x sec -1. Half-life is 35 min. Start with 5.00 g sugar. How much is left after 2 hr and 20 min?

48 Half-Life Section 15.4 and Screen 15.8 Solution Radioactive decay is a first order process. Tritium ---> electron + helium Tritium ---> electron + helium 3 H 0 -1 e 3 He 3 H 0 -1 e 3 He If you have 1.50 mg of tritium, how much is left after 49.2 years? t 1/2 = 12.3 years

49 Half-Life Section 15.4 and Screen 15.8 Solution ln [A] / [A] 0 = -kt [A] = ?[A] 0 = 1.50 mgt = 49.2 years Need k, so we calc k from: k = / t 1/2 Obtain k = y -1 Now ln [A] / [A] 0 = -kt = - ( y -1 ) (49.2 y) = = Take antilog: [A] / [A] 0 = e = is the fraction remaining! Start with 1.50 mg of tritium, how much is left after 49.2 years? t 1/2 = 12.3 years

50 Half-Life Section 15.4 and Screen 15.8 Solution [A] / [A] 0 = is the fraction remaining! Because [A] 0 = 1.50 mg, [A] = mg But notice that 49.2 y = 4.00 half-lives 1.50 mg ---> mg after mg ---> mg after 1 ---> mg after 2 ---> mg after 2 ---> mg after 3 ---> mg after 3 ---> mg after 4 ---> mg after 4 Start with 1.50 mg of tritium, how much is left after 49.2 years? t 1/2 = 12.3 years

51 Half-Lives of Radioactive Elements Rate of decay of radioactive isotopes given in terms of 1/2-life. 238 U --> 234 Th + He4.5 x 10 9 y 14 C --> 14 N + beta5730 y 131 I --> 131 Xe + beta8.05 d Element seaborgium 263 Sg 0.9 s

52 Darleane Hoffman of UC-Berkeley studies the newest elements. Hoffman is Director of Seaborg Institute. Rec’d ACS Award in Nuclear Chem and the Garvan Medal.