Belle SVD status & upgrade plans O. Tajima (KEK) Belle SVD group.

Slides:



Advertisements
Similar presentations
The Belle Silicon Vertex Detector T. Tsuboyama (KEK) 6 Dec Workshop New Hadrons with Various Flavors 6-7 Dec Nagoya Univ.
Advertisements

ATLAS SCT Endcap Detector Modules Lutz Feld University of Freiburg for the ATLAS SCT Collaboration Vertex m.
H b and other  (5S) results at Belle D. Santel Rencontres de Blois June 1, Introduction to h b and  (5S) 2.Search for the h b 3. Observation of.
The Silicon Vertex Detector of the Belle II Experiment
Summary of the SVD session 19 March 2009 T. Tsuboyama (KEK)
The Belle II Silicon Vertex Detector Readout Chain Markus Friedl (HEPHY Vienna) TWEPP2012, 19 September 2012.
The Origami Chip-on-Sensor Concept for Low-Mass Readout of Double-Sided Silicon Detectors M.Friedl, C.Irmler, M.Pernicka HEPHY Vienna.
LHC SPS PS. 46 m 22 m A Toroidal LHC ApparatuS - ATLAS As large as the CERN main bulding.
PHENIX Vertex Tracker Atsushi Taketani for PHENIX collaboration RIKEN Nishina Center RIKEN Brookhaven Research Center 1.Over view of Vertex detector 2.Physics.
Striplet option of Super Belle Silicon Vertex Detector Talk at Joint Super B factory workshop, Honolulu 20 April 2005 T.Tsuboyama.
The Belle SVD Trigger  Tom Ziegler  Vertex 2002  Kailua-Kona, Hawaii, 4-8 th nov The Belle SVD Trigger Tom Ziegler on behalf of the Belle SVD.
Construction and Performance of a Double-Sided Silicon Detector Module using the Origami Concept C. Irmler, M. Friedl, M. Pernicka HEPHY Vienna.
1 The LHCb Vertex detector 15/9/2003 Physics –Goals –Properties and consequences LHCb –Overview of the detector Vertex –Specifications –Silicon stations.
David L. Winter for the PHENIX Collaboration PHENIX Silicon Detector Upgrades RHIC & AGS Annual Users' Meeting Workshop 3 RHIC Future: New Physics Through.
The Silicon Vertex Detector of the Belle II Experiment
D. Lissauer, BNL. 1 ATLAS ID Upgrade Scope R&D Plans for ATLAS Tracker First thoughts on Schedule and Cost.
SuperKEKB to search for new sources of flavor mixing and CP violation - Introduction - Introduction - Motivation for L= Motivation for L=
INSTR-08, BINP, Novosibirsk 1 Belle calorimeter upgrade B.Shwartz, Budker Institute of Nuclear Physics Novosibirsk on behalf of BELLE calorimeter.
Status and Physics Prospects of the SuperKEKB Project Y. Horii Tohoku Univ. (Japan) 1 5th March 2011, La Thuile 2011.
SuperKEKB to search for new sources of flavor mixing and CP violation - Introduction - Introduction - Motivation for L= Motivation for L=
Pixel hybrid status & issues Outline Pixel hybrid overview ALICE1 readout chip Readout options at PHENIX Other issues Plans and activities K. Tanida (RIKEN)
Nov. 7, 2005Vertex2005 A. Kibayashi 1 Status of the BELLE Silicon Vertex Detector Vertex2005 Nikko Nov. 7-11, 2005 Atsuko Kibayashi Tokyo Institute of.
Direct CP violation in    decays at Belle Yuuj i Unno Hanyang university (For the Belle Collaboration) June 16 th -21 st, Seoul, Korea.
Installation and operation of the LHCb Silicon Tracker detector Daniel Esperante (Universidade de Santiago de Compostela) on behalf of the Silicon Tracker.
University of Nova GoricaBelle Collaboration S. Stanič, STD6, Sep , 2006 Status of the Belle Silicon Vertex Detector and its Development for Operation.
Super-Belle Vertexing Talk at Super B Factory Workshop Jan T. Tsuboyama (KEK) Super B factory Vertex group Please visit
Design and development of micro-strip stacked module prototypes for tracking at S-LHC Motivations Tracking detectors at future hadron colliders will operate.
TOP counter overview and issues K. Inami (Nagoya university) 2008/7/3-4 2 nd open meeting for proto-collaboration - Overview - Design - Performance - Prototype.
Vertex detector for the KEK B factory upgrade Toru Tsuboyama (KEK) 1 March 2008 Instr08 Novosibirsk.
Kodali Kameswara Rao TIFR, Mumbai
Vertex 2005, Nikko Manfred Pernicka, HEPHY Vienna 1.
25 Oct 2011 The Silicon Vertex Detector of the Belle II Experiment IEEE NSS 2011 Thomas Bergauer (HEPHY Vienna) Valencia.
Apollo Go, NCU Taiwan BES III Luminosity Monitor Apollo Go National Central University, Taiwan September 16, 2002.
Tsukuba-hall webcam 1 Beam Pipe and Vertex Detector extraction: on Nov. 10, 2010 Belle Detector Roll-out: Dec. 9, 2010 End-caps, CDC, B-ACC, TOF extraction:
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
H.-G. Moser Max-Planck-Institut fuer Physik 1 st open meeting SuperBelle KEK Summary of PXD Session 1 Status of CAPSH. Hoedlmoser (Video)
Jan24-26, 2008BNM2008 Atami, Japan1 Belle upgrade: Tracking and Vertexing T.Kawasaki(Niigata-U)
- Performance Studies & Production of the LHCb Silicon Tracker Stefan Koestner (University Zurich) on behalf of the Silicon Tracker Collaboration IT -
LHCb Vertex Detector and Beetle Chip
The Belle II DEPFET Pixel Detector
WG3 – STRIP R&D ITS - COMSATS P. Riedler, G. Contin, A. Rivetti – WG3 conveners.
1 CDC Readout - upgrade for Higher Luminosity - Y.Sakai (KEK) 29-Oct-2002 TRG/DAQ Review of Status/Plan (based on materials from S.Uno/M.Tanaka)
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
CGEM-IT project and beam test program G. Felici for the FE-LNF-TO team Partially supported by the Italian Ministry of Foreign Affairs under the Program.
 1 measurements with tree-level processes at Belle O. Tajima (KEK) Belle collaboration ICHEP06 July 28, 2006.
Study of Belle Silicon Vertex Detector Intrinsic Resolution Saša Fratina, Jožef Stefan Institute, Ljubljana, Slovenia for Belle SVD group.
Tests of a proximity focusing RICH with aerogel as radiator and flat panel PMT (Hamamatsu H8500) as photon detector Rok Pestotnik Jožef Stefan Institute,
CDC Upgrade Beam background Simulation study Idea for upgrade Upgrade plan Summary Shoji Uno (KEK) Mar-20 th, 2008.
DØ Beauty Physics in Run II Rick Jesik Imperial College BEACH 2002 V International Conference on Hyperons, Charm and Beauty Hadrons Vancouver, BC, June.
1 Performance of a CCD tracker at room temperature T. Tsukamoto (Saga Univ.) T. Kuniya, H. Watanabe (Saga Univ.); A. Miyamoto, Y. Sugimoto (KEK); S. Takahashi,
23/02/07G. Vidal-Sitjes, VCI2007 Vienna Conference on Instrumentation1 The LHCb RICH detector G. Vidal-Sitjes on behalf of the LHCb RICH team Outline:
SPHENIX Mid-rapidity extensions: Additional Tracking system and pre-shower Y. Akiba (RIKEN/RBRC) sPHENIX workfest July 29,
The BTeV Pixel Detector and Trigger System Simon Kwan Fermilab P.O. Box 500, Batavia, IL 60510, USA BEACH2002, June 29, 2002 Vancouver, Canada.
1 Belle & BaBar “Competition” Y.Sakai, KEK ASEPS 24-March-2010.
Belle II status and plans
SVD Introduction Wetzlar SVD-PXD Meeting, 4 February 2013
 Silicon Vertex Detector Upgrade for the Belle II Experiment
Status of the CDF II silicon tracking system
IOP HEPP Conference Upgrading the CMS Tracker for SLHC Mark Pesaresi Imperial College, London.
Christoph Schwanda (HEPHY Vienna) For the Belle II SVD group
Report on WP2 Activities
The Belle II Vertex Pixel Detector (PXD)
New Result on (5S) Decay from Belle
The Pixel Hybrid Photon Detectors of the LHCb RICH
Niels Tuning (Outer Tracker Group LHCb)
Koji Ueno National Taiwan U.
KEKB_Ring_3km_circumference
T. Bowcock University of Liverpool For the LHCb Collaboration
C. Irmler, M. Friedl, M. Pernicka HEPHY Vienna
Presentation transcript:

Belle SVD status & upgrade plans O. Tajima (KEK) Belle SVD group

KEKB : the highest luminosity in the world 3.5 GeV e +  8.0 GeV e  e + e    (4S) with  = mrad crossing angle Located in Tsukuba, Japan L peak = (1.65  )/cm 2 /sec  ~ 1M BB pairs/day integrated luminosity = 0.63 /ab _ Belle detector

Belle Detector K L  detector 14/15 layer RPC+Fe Electromagnetic Calorimeter CsI(Tl) 16X 0 Aerogel Cherenkov Counter n = 1.015~1.030 TOF counter 3.5 GeV e + Central Drift Chamber momentum, dE/dx 50-layers + He/C 2 H 6 charged particle tracking K/  separation Si Vertex Detector ( SVD ) 4-layer DSSD B vertex Muon / K L identification ,  0 reconstruction e +-, K L identification 8.0 GeV e -

SVD Group Frankfurt U., U. Hawaii, Jozef Stefan Inst., Kanagawa U., KEK, Krakow INP, U. Melbourne, National Taiwan U., Niigata U., Nihon Dental U., Nova Gorica U., Osaka U., Princeton U., U. Sydney, Tohoku U., U. Tokyo, Tokyo Inst. Tech., Tokyo Metropolitan U., Toyama NCMT, Vienna IHEP The Belle SVD Group ~100 people

SVD Past and Present SVD2 (Oct 2003 ~ ) SVD1 (1999 ~ 2003 ) Unresolved issues Rad. Hardness Small acceptance 3 layers 23 o <  < 139 o r min = 3.0 cm 2 kGy (2M Rad) 4 layers 17 o <  < 150 o r min = 2.0 cm 200 kGy (20M Rad)

SVD1  SVD2 : Larger Acceptance Coverage 84  91 % B 0  J/  K S 14.4  15.8 events/fb % Higher Efficiency Achieved !

SVD1  SVD2 : Smaller Radius ~30% improvement for z-Vertex Resolution

SVD1  SVD2 : Radiation Tolerance Layer 3 Layer 2 (1.2  m) Layer 1 Relative Gain SVD1 Readout VA1 (0.8  m) Rad. Tole. 2kGy SVD2 Readout VA1TA (0.35  m) Rad. Tole. 200kGy No longer afraid of Radiation Damage No replacement for SVD2 (>3 years) Gain of operation time is priceless Belle IR dose 0.2kGy/year Layer 1 Layer 3 Layer 4 Layer 2

SVD Past and Present SVD2 (Oct 2003 ~ ) SVD1 (1999 ~ 2003 ) Unresolved issues Rad. Hardness Small acceptance 3 layers 23 o <  < 139 o r min = 3.0 cm 2 kGy (2M Rad) 4 layers 17 o <  < 150 o r min = 2.0 cm 200 kGy (20M Rad) Higher efficiency Better resolution Stable operation  efficiency Unresolved issues z trigger  terminated Beam BG (non-phys) event suppression Performance in higher Beam BG

Future prospects of Beam-BG Peak Luminosity (/nb/sec) Beam currents (A) Higher Luminosity is provided by Higher Beam current Higher Luminosity will be provided by the Higher beam currents Beam BG  I 2 Beam BG may increase x(2~3) in 2008

SVD Past and Present SVD2 (Oct 2003 ~ ) SVD1 (1999 ~ 2003 ) Unresolved issues Rad. Hardness Small acceptance 3 layers 23 o <  < 139 o r min = 3.0 cm 2 kGy (2M Rad) 4 layers 17 o <  < 150 o r min = 2.0 cm 200 kGy (20M Rad) Higher efficiency Better resolution Stable operation  efficiency Unresolved issues z trigger  terminated Beam BG (non-phys) event suppression Performance in higher Beam BG

Layer1 Layer2 Layer3 Layer4 Occupancy Hit-finding Efficiency High occupancy  Fake hits  Cluster shape distortion Current BG level Future BG level ? Degradation of Hit-finding Efficiency Is there hit or not?

Degradation of Resolution Occupancy (%) Intrinsic resolution (  m) BG overlay MC B 0  J/  K S Intrinsic Resolution BGx3 residual (  m)

SVD Past, Present and Future SVD2 (Oct 2003 ~ ) SVD1 (1999 ~ 2003 ) Unresolved issues Rad. Hardness Small acceptance 3 layers 23 o <  < 139 o r min = 3.0 cm 2 kGy (2M Rad) 4 layers 17 o <  < 150 o r min = 2.0 cm 200 kGy (20M Rad) Software Efforts in progress Almost saturated Unresolved issues z trigger  terminated Beam BG (non-phys) event suppression Performance in higher Beam BG SVD3 from ’07

Threshold Shorter shaping time gives less occupancy Occupancy Reduction in SVD3 ~2000ns VA1TA Tp~800ns Threshold ~160ns APV25 Tp~50ns APV25 x 4chip VA1TA x 4chip Occupancy shaping time of readout chip Occupancy ~ 1/13 Performance degradation is not serious for outer layers Quick upgrade is necessary (~2007)  Replace only for Layer 1 & 2  Layer 3 & 4 are same as SVD2

APV25 VA1TAAPV25 Peaking time [ns]80040~200 Pulse width [ns]~2000~160 Pipeline memory---192depths Clock [MHz]540 Sensor Preamp + CRRC Shaper Multiplexing Pipeline memory FADC Developed for CMS Si Tracker waveform sampling Time window ~20ns Further BG reduction

DSSD should be optimized for APV25 Capacitive noise will be serious because of short T p 800ns  50ns (C : detector capacitance) Reduction of Capacitance is Essential VA1TA (T p =800ns) APV25 (T p =50ns) Noise (enc) Detector Capacitance (pF) Capacitance of SVD2 DSSD(r-  )

DSSD optimization for APV25 SVD2 DSSDSVD3 DSSD z (p) r-  (n) z (n) r-  (p) strip length (mm) strip/readout pitch (  m) 75/15050/5076/ /51 implant width (  m) capacitance (pF) S/N (VA1TA) S/N (APV25) 1 st layer S/N (APV25) 2 nd layer Floating Strips for r-  side (flip p  n strip) Reduction of strip width Test sensors by HPK: DSSD x20 (2006), SSD(n-strip) (2005)

Beam Test (4GeV/c   ) with APV25 + VA1TA system APV25+SSD(n-side) Dec, 2005 SVD2 spare ladders x3

SVD2 ladder APV25 ladder Simultaneous operation succeeded for APV25 system with SVD2 system

S/N of SSD towards SVD3 S/N=34 Readout strip Floating strip Charge Collection Eff. = 81% Beam test results 28.4mm (  DSSD 26.1mm)

Laser Scan test for SVD3 DSSD Laser 980nm Sep, 2006 Double sided assembly Poor bonding due to Kapton flex in R&D z (n strip) r-  (p strip)

Laser scan results (n-strip) SSD DSSD for SVD3 Charge Collection Eff. = 85% Sep, 2006

Laser Scan results (p-strip) Sep, 2006 Due to poor bonding

Test in High BG area Plan to start from Oct, 2006 Operation with SVD2 spare ladder Check performances Occupancy reduction, etc.

SVD3 mockup test Sufficient clearance is confirmed for the larger Hybrid

NovOct Schedule DSSD Hybrid SepAugJulJunMayAprMarFebJanDec full production Production / test Assembly Jig prod. / test Layer 1Layer 2mount Repeater prod. / test Test w/ ladders SYSTEM TEST INSTALLATION FADC Prod. / test DAQ Prod. / test Design Finalized soon

Summary The Belle SVD operated smoothly for the past year Degradation of performance due to high BG Hit finding Efficiency (layer 1 & 2), Vertex Resolution Might be serious ~2008 Upgrade plan (SVD3) to replace readout chip VA1TA  APV25 (occupancy < 1/10) Replace only in Layer 1 and 2 (Layer 3 & 4 will be kept) DSSD is optimized for APV25 Short strip width to reduce capacitance noise Test sensors (DSSD & SSD) Beam test for SSD  S/N~34 Simultaneous operation of APV25 system with SVD2 system Laser test  full production was ordered from HPK We would like to upgrade SVD3 next year

backup

SVD3 mechanical issues connector APV Modifications are necessary because APV25 chip is wider than VA1TA

 = Requirements from Physics High Efficiency ( ~90% ) Good Resolution (  z ~ 100  m ) electron (8GeV) positron (3.5GeV)  (4S) resonance ++ -- K+K+ --  ++ -- K S/L J/   z ~ 200  m B0B0 B0B0 _ B 0 tag _ Asym. = -  CP sin2  1 sin  m  t