Evaluation of actinide nuclear data Osamu Iwamoto Japan Atomic Energy Agency 2010 Symposium on Nuclear Data.

Slides:



Advertisements
Similar presentations
Nuclear Reactor Theory, JU, First Semester, (Saed Dababneh). 1 1/ v 235 U thermal cross sections fission 584 b. scattering 9 b. radiative capture.
Advertisements

Neutron-induced Reactions
Nuclear Reactor Theory, JU, Second Semester, (Saed Dababneh). 1 1/ v 235 U thermal cross sections fission 584 b. scattering 9 b. radiative capture.
Combined evaluation of PFNS for 235 U(n th,f), 239 Pu(n th,f), 233 U(n th,f) and 252 Cf(sf) (in progress) V.G. Pronyaev Institute of Physics.
M3.1 JYFL fission model Department of Physics, University of Jyväskylä, FIN-40351, Finland V.G. Khlopin Radium Institute, , St. Petersburg, Russia.
Lorentzian-like models of E1 radiative strength functions V. A. Plujko, O. M. Gorbachenko, E. V. Kulich Taras Shevchenko National Kyiv University, Ukraine.
NUCLEAR REACTION MODELS FOR SYSTEMATIC ANALYSIS OF FAST NEUTRON INDUCED (n,p) REACTION CROSS SECTIONS M.Odsuren, J.Badamsambuu, G.Khuukhenkhuu Nuclear.
Total Monte Carlo and related applications of the TALYS code system Arjan Koning NRG Petten, the Netherlands Technical Meeting on Neutron Cross- Section.
Kazimierz What is the best way to synthesize the element Z=120 ? K. Siwek-Wilczyńska, J. Wilczyński, T. Cap.
I. Dillmann Institut für Kernphysik, Forschungszentrum Karlsruhe KADoNiS The Sequel to the “Bao et al.” neutron capture compilations.
G. Perdikakis1,2, C. T. Papadopoulos1, R. Vlastou1, A. Lagoyannis2, A
Direct Reactions. Optical model Represent the target nucleus by a potential -- Attenuation length.
N  p + e   e    e   e +  Ne *  Ne +  N  C + e   e Pu  U +  Fundamental particle decays Nuclear.

EURISOL User Group, Florence, Jan Spin-Dependent Pre-Equilibrium Exciton Model Calculations for Heavy Ions E. Běták Institute of Physics SAS,
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Nuclear Reactions Categorization of Nuclear Reactions According to: bombarding.
NUCLEAR STRUCTURE PHENOMENOLOGICAL MODELS
25 9. Direct reactions - for example direct capture: Direct transition from initial state |a+A> to final state B +  geometrical.
Resonant Reactions The energy range that could be populated in the compound nucleus by capture of the incoming projectile by the target nucleus is for.
Role of mass asymmetry in fusion of super-heavy nuclei
The Theory of Partial Fusion A theory of partial fusion is used to calculate the competition between escape (breakup) and absorption (compound-nucleus.
W. Udo Schröder, 2007 Semi-Classical Reaction Theory 1.
Futoshi Minato JAEA Nuclear Data Center, Tokai Theoretical calculations of beta-delayed neutrons and sensitivity analyses 1.
Coupled-Channel Computation of Direct Neutron Capture and (d,p) reactions on Non- Spherical Nuclei Goran Arbanas (ORNL) Ian J. Thompson (LLNL) with Filomena.
Brookhaven Science Associates U.S. Department of Energy Covariance data: Status and Perspective at BNL D. Rochman, M. W. Herman, P. Obložinský National.
Aim  to compare our model predictions with the measured (Dubna and GSI) evaporation cross sections for the 48 Ca Pb reactions. Calculations.
Α - capture reactions using the 4π γ-summing technique Α. Lagoyannis Institute of Nuclear Physics, N.C.S.R. “Demokritos”
The Status of Nuclear Data above 20 MeV Masayoshi SUGIMOTO, Tokio FUKAHORI Japan Atomic Energy Agency IAEA’s Technical Meeting on Nuclear Data Libraries.
Nuclear Level Density 1.What we know, what we do not know, and what we want to know 2.Experimental techniques to study level densities, what has been done.
V. Avrigeanu - Workshop on Activation Data (EAF-2005), Prague, June 7-9, Progress Report on Theoretical Tools and Calculations of Cross Sections.
Kazimierz 2011 T. Cap, M. Kowal, K. Siwek-Wilczyńska, A. Sobiczewski, J. Wilczyński Predictions of the FBD model for the synthesis cross sections of Z.
Lawrence Livermore National Laboratory SciDAC Reaction Theory LLNL-PRES Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA
JENDL/HE-2007 & On going Activities for JENDL-4 Japan Atomic Energy Agency S. Kunieda IAEA 1-st RCM of CRP on FENDL-3.0, 2-5 Dec Y. Watanabe Kyushu.
Nuclear Models Nuclear force is not yet fully understood.
Isospin mixing and parity- violating electron scattering O. Moreno, P. Sarriguren, E. Moya de Guerra and J. M. Udías (IEM-CSIC Madrid and UCM Madrid) T.
1 Roberto Capote, IAEA Nuclear Data Section Web: IAEA IAEA HQ, Vienna,
Forschungszentrum Karlsruhe in der Helmholz-Gemeinschaft Karlsruhe Institute of Technology Nuclear Data Library for Advanced Systems – Fusion Devices (FENDL-3)
Recent improvements in the GSI fission model
April 17 DoE review 1 Reaction Theory in UNEDF Optical Potentials from DFT models Ian Thompson*, J. Escher (LLNL) T. Kawano, M. Dupuis (LANL) G. Arbanas.
10-1 Fission General Overview of Fission The Probability of Fission §The Liquid Drop Model §Shell Corrections §Spontaneous Fission §Spontaneously Fissioning.
Filling up FENDL with an all-in-one nuclear data evaluation and validation system around TALYS Arjan Koning NRG Petten, The Netherlands FENDL-3 meeting.
NUCLEAR LEVEL DENSITIES NEAR Z=50 FROM NEUTRON EVAPORATION SPECTRA IN (p,n) REACTION B.V.Zhuravlev, A.A.Lychagin, N.N.Titarenko State Scientific Center.
Applied Nuclear Physics Group The final meeting of IAEA CRP – 6. 2 Calculation and Evaluation of (n,  ) Cross Sections for Producing 32 P,
NEUTRON SKIN AND GIANT RESONANCES Shalom Shlomo Cyclotron Institute Texas A&M University.
1 Systematic calculations of alpha decay half-lives of well- deformed nuclei Zhongzhou REN ( 任中洲 ) Department of Physics, Nanjing University, Nanjing,
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority EAF-2010 – the best of a generation Jean-Christophe Sublet, Lee Packer Euratom/CCFE.
Marilena Avrigeanu28th Int. Workshop. on Nuclear Theory Rila Mountains 2009 α - particle Optical Potential for astrophysical studies M. Avrigeanu and V.
Protons Neutrons Nuclear structure at finite temperature probed by the Giant Dipole Resonance G. Benzoni, O. Wieland, A. Bracco, N. Blasi, F. Camera, F.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Fission cross sections and the dynamics of the fission process F. -J
Fusion of light halo nuclei
232 Th EVALUATION IN THE RESOLVED RESONANCE RANGE FROM 0 to 4 keV Nuclear Data Group Nuclear Science and Technology Division Oak Ridge National Laboratory.
Nuclear and Radiation Physics, BAU, First Semester, (Saed Dababneh). 1.
PROPERTIES OF HIGH-ENERGY ISOSCALAR MONOPOLE EXCITATIONS IN MEDIUM-HEAVY MASS SPHERICAL NUCLEI M. L. Gorelik 1), S. Shlomo 2), B. A. Tulupov 3), M. H.
April 17 DoE review 1 Future Computing Needs for Reaction Theory Ian Thompson Nuclear Theory and Modeling Group, Lawrence Livermore National Laboratory.
KIT – The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Institute for Neutron Physics and Reactor Technology Evaluation.
EGAF Status 2015 Richard B. Firestone Lawrence Berkeley National Laboratory and the University of California, Berkeley, 94720, USA 21 st Technical Meeting.
Time dependent GCM+GOA method applied to the fission process ESNT janvier / 316 H. Goutte, J.-F. Berger, D. Gogny CEA/DAM Ile de France.
Systematical Analysis of Fast Neutron Induced Alpha Particle Emission Reaction Cross Sections Jigmeddorj Badamsambuu, Nuclear Research Center, National.
Congresso del Dipartimento di Fisica Highlights in Physics –14 October 2005, Dipartimento di Fisica, Università di Milano Contribution to nuclear.
Dynamical Model of Surrogate Reaction Y. Aritomo, S. Chiba, and K. Nishio Japan Atomic Energy Agency, Tokai, Japan 1. Introduction Surrogate reactions.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Ciemat Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas D. Cano-Ott, 6 th Geant4 Space Users Workshop Evaluated neutron cross section.
5. Compound nucleus reactions Prof. Dr. A.J. (Arjan) Koning 1,2 1 International Atomic Energy Agency, Vienna 2 Division of Applied Nuclear Physics, Department.
V. Nuclear Reactions Topics to be covered include:
3. The optical model Prof. Dr. A.J. (Arjan) Koning1,2
Department of Physics, University of Jyväskylä, Finland
Shintaro Hashimoto1, Yosuke Iwamoto 1, Tatsuhiko Sato 1, Koji Niita2,
Resonance Reactions HW 34 In the 19F(p,) reaction:
probability of surviving
Presentation transcript:

Evaluation of actinide nuclear data Osamu Iwamoto Japan Atomic Energy Agency 2010 Symposium on Nuclear Data

Applications of nuclear data nucleosynthesis JRR-3 J-PARC ADS soft error ( 株 ) 化研提供 medical application nuclear data Accelerator Reactor crab nebula Tc-99m 2

recent actinide data in JENDL ReleaseNo. of actinides Covariance JENDL (JENDL-3.2 Cov. File, Major) JENDL (after release of JENDL-3.3, MA) JENDL/AC JENDL (all actinides, all cross sections) 3

Neutron induced reactions U-235 U-236 U-235 Pa-235 Nucleus (A~90) Nucleus (A~140) Fission Spallation Capture Elastic scattering Inelastic scattering 4

neutron induced reaction cross sections 5 resolved resonanceunresolved resonance thermal 235 U

Nuclear data evaluation 6 EXFOR KALMAN, GMA CRECTJ NJOY CCONE

Physical quantities of actinide data in JENDL-4 MFPhysical quantitiesreaction 1number of neutrons per fission, Components of energy release due to fission fission 2Resonance parametersResolved RP, unresolved RP 3Neutron cross sections(n,n), (n,n’), (n,f),(n,g), (n,2n)... 4Angular distributions of secondary neutrons(n,n), fission 5Energy Distributions of Secondary Neutronsfission 6Energy-angle distributions(n,n’), (n,2n), (n,3n), (n,g) 12Photon Production MultiplicitiesFission 14Photon Angular DistributionsFission 15Continuous Photon Energy SpectraFission 31Covariances of average number of neutrons per fissionFission 32Covariances of resonance parametersResolved RP 33Covariances of neutron cross sections(n,n), (n,n’), (n,f),(n,g), (n,2n)... 34Covariances for Angular Distributions(n,n) 35Covariances for Energy DistributionsFission neutron 7

MF=1 number of neutrons per fission – Prompt neutron ( p ) – Delayed neutron ( d ) Components of energy release due to fission 8

Prompt neutron Experimental data Systematics – Howerton Nucl. Sci. Eng. 62, 348 (1997) – Ohsawa J. Nucl. Radiochem. Sci. Eng. 9, 19 (2008) Ohsawa(2008) 9

p for U isotopes NuclidesJENDL-3.3JENDL-4 U U U = JENDL-3.3 U U = JENDL-3.3 U = JENDL-3.3 U p for thermal neutron 10

Experimental data Systematics – R.J.Tuttle INDC(NDS)-107/G+Special, p.29 (1979) – G.Benedetti et al. Nucl. Sci. Eng., 80, 379 (1982) – R.Waldo et al. Phys. Rev., C23, 1113 (1981) -(A c -3Z)A c /Z Waldo (1981) Tuttle (1979) Z c A c Delayed neutron 11

MF=2 Resolved resonance – SAMMY code (N. Larson, ORNL/TM-9179/R8, ENDF-364/R2, 2008) Unresolved resonance – ASREP code (Y. Kikuchi et al., JAERI-Data/Code ) 12

Resonance Theory Useful in the low energy region Breit-Wigner formula – G. Breit and E.P. Wigner Phys. Rev., 49, 519 (1936). – Resonance parameters E ’,  n,  x should be evaluated for each J and L. Reich-Moore formula – C.W. Reich and M.S. Moore Phys. Rev., 111, 929 (1958) 13

Resonance Cross Sections 235 U(n,f) 14

Compilation of Resonance Parameters S.F. Mughabghab “ Atlas of neutron resonances: resonance parameters and thermal cross sections Z=1-100 ”, Elsevier (2006) E,  n,  ,  f for each L and J Thermal cross sections Resonance integrals Scattering radius Neutron separation energy 15

Np-237 capture cross section for thermal neutron 16

Am-241 thermal capture cross section ( ) (  g.s. = 620  25 、 IR=0.896 assumed ) 17 total cross section

18 thermal capture cross section(b) Kalebin (1976)624  20 Shinohara+ (1997)854  58 Fioni+ (2001)696  48 Bringer+ (2006)714  23 Present697.1 JENDL Am thermal neutron capture  g = 620  25 S. Nakamura+ (2007)  g+m = 692  28 (IR=0.896)

U fission cross sections at RRR 19

Cm-243, 244(n,f) Low resolution measurement using lead slowing-down spectrometer 20

Unresolved resonance distribution (Porter-Thomas) Width-fluctuation correction factor : Breit-Wigner formula Average cross section ASREP: Y. Kikuchi et al., JAERI-Data/Code

Result of fitting with ASREP R = D =  g =  f = 22

MF=3, 4, 5, 6 Least-squares fitting to experimental data Fission cross section – (Simultaneous evaluation on KALMAN) Major actinide (U-233, 235, 238, Pu-239, 241, 242) – GMA MA Theoretical model calculation All reaction cross sections, angular distribution, secondary particle spectrum – model parameter adjustment 23

total (n,n’) (n,  ) (n,f) (n,2n)(n,3n) elastic MF=3 Neutron induced reaction on U

MF=4 U-238(n,n) angular distribution 25 neutron spectrum En=5.5 MeV JENDL-3.3 CCONE 実験 En=550 keV  ( deg. ) JENDL-3.3 CCONE d  /d  (b/sr)  ( deg. ) En(MeV)

MF=5, 6  CM (deg) d  /d  (b/sr) Direct process  CM (deg ) d  /d  (b/sr) Pre-equilibrium process Compound process  CM (deg) d  /d  (b/sr) U-239 neutron 26

Simultaneous evaluation of fission cross section Least-squares fitting – SOK code (Kawano) – First order spline Experimental data ReactionsetsReactionsets 233 U U/ 235 U9 235 U U/ 233 U1 238 U9 238 U/ 235 U Pu Pu/ 235 U Pu4 240 Pu/ 235 U Pu6 240 Pu/ 239 Pu1 241 Pu/ 235 U4 27

SOK 28 evaluated data 1 st order spline cross section ratio linearize experimental data posterior covariance prior cov. experimental data cov. posterior design matrix

1 st order spline Correlation matrix 29

235 U fission cross section (SOK) 30

U-233(n,f)/U-235(n,f) (SOK) 31

Time evolution of nucleon induced reaction 32 incident nucleon 1p state 2p-1h state 3p-2h state compound state direct process pre-equilibrium process

Reaction models in CCONE code Direct prosess – Optical model – Coupled-channel method – Distorted wave Born approximation Pre-equilibrium process – Exciton model (2 components) Compound process – Hauser-Feshbach 33

Incident channel 34 incident nucleon 1p state 2p-1h state 3p-2h state compound state direct process pre-equilibrium process

Optical model  Total cross section  Shape elastic scattering cross section  Transmission coefficient (used in statistical model) Optical model potential (OMP) scattering matrix (strength of scattering waves ) Schrödinger equation 35 incident nucleon

OMP and wave function Wave function Potential Fe-56 + n (En=10 MeV) OMP=koning-n Imaginary real 36

Cross section variation with OMPs total shape elastic reaction 37

Direct process 38 incident nucleon 1p state 2p-1h state 3p-2h state compound state direct process pre-equilibrium process

Coupled-channels optical model U-238 deformation on ground state incident wave scattered wave ground state rotational band strong couplings between levels 39

Coupled-channel optical model rotational band Deformed nucleus 40 Nuclear radius Nuclear wave function Coupled-channels equation Intrinsic wave function Rotational wave function deformed OMP neutron radial wave function

Neutron Strength keV Exp. Spherical OM calc. RRM-CC calc. s-wave (l=0) s-wave neutron strength function global CC OMP S. Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007) actinide 41

U-238 scattering cross section ( ) 42

pre-equilibrium process 43 incident nucleon 1p state 2p-1h state 3p-2h state compound state direct process pre-equilibrium process

p ,h ,p,h 1,0,0,0 2,1,0,01,0,1,1 3,2,0,0 2,1,1,11,0,2,2 p,n,  emission Pre-equilibrium process Exciton model (2 components) 44 particlehole  : proton : neutron

Parameters in exciton model p ,h ,p,h 1,0,0,0 2,1,0,01,0,1,1 3,2,0,0 2,1,1,11,0,2,2 p,n emission transition rate emission rate of particle p-h creation by proton p-h creation by neutron 45 inverse reaction cross section (OM calculation)

Exciton model parameters transition matrix element state density C C single particle state density Koning et al., Nucl. Phys. A744, 15 (2004) 46 1/g EfEf Pauli correction

Dependences of spectrum and cross sections on exciton model parameters Neutron En=14 MeV 47

compound process 48 incident nucleon 1p state 2p-1h state 3p-2h state compound state direct process pre-equilibrium process

Decay chain on statistical model Target discrete Continuum 49 Ex

Hauser-Feshbach Width fluctuation correction Normalization coefficient Transmission coefficient (OM calculation ) Level density of daughter nucleus Excitation energy of target Energy conservation Parity conservation Total spin, parity 50

Cumulative number of levels for U isotopes Level density discrete level continuum level 51

Level density (Fermi gas model) average resonance spacing spin excitation energy dependence parity 52

Level density Saddle point ( inner γ-deformation ) ( outer mass asymmetry ) Collective enhancement (rotational level) Shell structure washout Ground state Fermi gas constant temperature 53

 -ray strength function 54 Standard Lorentzian Enhanced Generalized Lorentzian Kopecky et al. PRC47,312 (1993), PRC41,1941(1990)  -ray transmission coefficient

Giant dipole resonance parameter 55 Systematics

Fission Transition state Penetrability of a parabolic barrier double barriers Transmission coefficient 56 barrier curvature barrier height transition state energy

Fission cross sections for U isotopes 57

U capture cross section 58

U-238(n,2n) Frehaut data without correction 59

Capture cross sections for Pu and N p 60 Pu-237 Pu-239 Pu-241 Pu-244 Pu-246 Np-235 Np-236 Np-237 Np-239 Np-238 JENDL-3.3 JENDL-4.0

Np fission cross sections GMA CCONE 61

Neutron spectrum 62

WPEC Subgroup 29 U-235 Capture Cross Section in the keV to MeV Energy Region 63

Problem of integral experiment sodium voided reactivity in BFS MOX Sensitivity to 235 U capture cross section sodium voided reactivity 64

Possible overestimation of capture cross section of U-235 U-235 capture cross section capture cross section/ fission cross section Resonance region 65

U-235 capture cross section 66 Upper boundary of RRR: 2.25  0.5 keV

C/E value of BFS criticalities 67

Resources for nuclear data evaluation EXFOR – – – RIPL – JAEA Nuclear data center – – SPES (Search and Plot Executive System) – mailto: 68