Der Paul van der Werf Leiden Observatory Star formation and molecular gas in (U)LIRGs Sant Cugat April 17, 2012.

Slides:



Advertisements
Similar presentations
Ming Zhu (JAC/NRC) P. P. Papadopoulos (Argelander Institute for Astronomy, Germany) Yu Gao (Purple Mountain Observatory, China) Ernie R. Seaquist (U. of.
Advertisements

Luminous Infrared Galaxies with the Submillimeter Array: Probing the Extremes of Star Formation Chris Wilson (McMaster), Glen Petitpas, Alison Peck, Melanie.
The Global Star Formation Law in Dense Molecular Gas Yu Gao Purple Mountain Observatory Chinese Academy of Sciences Sept. 7, (IAUS 284)
The Two Tightest Correlations: FIR-RC and FIR-HCN Yu GAO Purple Mountain Observatory, Nanjing Chinese Academy of Sciences.
From GMC-SNR interaction to gas-rich galaxy-galaxy merging Yu GAO Purple Mountain Observatory, Nanjing, China Chinese Academy of Sciences.
Connecting Dense Gas Tracers of Star Formation in our Galaxy to High-z Star Formation Jingwen Wu & Neal J. Evans II (Univ. of Texas at Austin) ; Yu Gao.
Extragalactic Star Formation into the ALMA Era (Beyond CO)* Yu GAO 高 煜 Purple Mountain Observatory, Nanjing Chinese Academy of Sciences *Dedicated to the.
DUST AND MOLECULES IN SPIRAL GALAXIES as seen with the JCMT F.P. Israel, Sterrewacht Leiden.
Excitation Mechanisms: The Irradiated and Stirred ISM Marco Spaans (Groningen) Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem.
Molecular gas in the z~6 quasar host galaxies Ran Wang National Radio Astronomy Observatory Steward Observatory, University of Atrizona Collaborators:
Der Paul van der Werf Leiden Observatory HerCULES Lorentz Centre February 28, 2012.
Jeong-Eun Lee Kyung Hee University University of Texas at Austin.
(Cold) dust and gas in high-z AGNs: a prelude to Herschel and ALMA Roberto Maiolino Osservatorio Astronomico di Roma.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
Der Paul van der Werf Leiden Observatory Radiative and mechanical feedback in the molecular gas in (U)LIRGs London September 16, 2011.
Observations of Molecular Outflows in Quasars Anna Boehle March 2 nd, 2012.
 High luminosity from the galactic central region L bol ~ erg/s  High X-ray luminosity  Supermassive black hole at the center of the galaxy.
Eddington limited starbursts in the central 10pc of AGN Richard Davies, Reinhard Genzel, Linda Tacconi, Francisco Mueller Sánchez, Susanne Friedrich Max.
Der Paul van der Werf Leiden Observatory Fingerprinting (ultra)luminous infrared galaxies `   September 27, Institute for Astronomy.
Evolution of Extreme Starbursts & The Star Formation Law Yu Gao Purple Mountain Observatory, CAS.
Constraining TW Hydra Disk Properties Chunhua Qi Harvard-Smithsonian Center for Astrophysics Collaborators : D.J. Wilner, P.T.P. Ho, T.L. Bourke, N. Calvet.
ULTRALUMINOUS INFRARED GALAXIES: 2D KINEMATICS AND STAR FORMATION L. COLINA, IEM/CSIC S. ARRIBAS, STSCI & CSIC D. CLEMENTS, IMPERIAL COLLEGE A. MONREAL,
Submillimeter Astronomy in the era of the SMA, 2005, Cambridge, MA Observations of Extragalactic Star Formation in [CI] (370  m) and CO J=7-6 T. Nikola.
Jeff Mangum (NRAO) Jeremy Darling (CU Boulder) Karl Menten (MPIfR Bonn) Christian Henkel (MPIfR Bonn) Meredith MacGregor (NRAO / Harvard University) Brian.
STAR FORMATION STUDIES with the CORNELL-CALTECH ATACAMA TELESCOPE Star Formation/ISM Working Group Paul F. Goldsmith (Cornell) & Neal. J. Evans II (Univ.
Der Paul van der Werf & Leonie Snijders Leiden Observatory The anatomy of starburst galaxies: sub-arcsecond mid-infrared observations Lijiang August 15,
Der Paul van der Werf Leiden Observatory H 2 emission as a diagnostic of physical processes in star forming galaxies Paris October 1, 1999.
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
6 th IRAM 30m Summer School Star formation near and far A. Fuente Observatorio Astronómico Nacional (OAN, Spain) Photon Dominated Regions I. Physical conditions.
Henize 2-10 IC 342 M 83 NGC 253 NGC 6946 COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES E.Bayet : LRA-LERMA-ENS (Paris) IC 10 Antennae.
Determining the dynamics of the ultracompact HII region (UCHII) Monoceros R2 A. Fuente Observatorio Astronómico Nacional (OAN)
Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array Studies of Star.
ALMA DOES GALAXIES! A User’s Perspective on Early Science Jean Turner UCLA.
Frayer (1) Redshifted Molecular Gas – Evolution of Galaxies David T. Frayer (NRAO) ALMA-Band ALMA Band-2 (68-90 GHz) is a crucial missing band for.
Note that the following lectures include animations and PowerPoint effects such as fly-ins and transitions that require you to be in PowerPoint's Slide.
Gas Dynamics, AGN, Star Formation and ISM in Nearby Galaxies Eva Schinnerer (MPIA) S. Haan, F. Combes, S. Garcia-Burillo, C.G. Mundell, T. Böker, D.S.
The Irradiated and Stirred ISM of Active Galaxies Marco Spaans, Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem Baan (ASTRON),
Large-Scale Winds in Starbursts and AGN David S. Rupke University of Maryland Collaborators: Sylvain Veilleux D. B. Sanders  v = km s -1 Rupke,
VNGS science highlight: PDR models of M51 [CII]/[OI]63 ([CII]+[OI]63)/F TIR Similar gas properties in arm and interarm regions. Higher densities and stronger.
SPIRE-FTS spectrum of Arp 220, Mrk 231 and NGC Bright CO (J = 4-3 to J = 13-12), water, and atomic fine-structure line transitions are labeled. The.
R. Meijerink, P. van der Werf, F. Israel and the HEXGAL team HERSCHEL OBSERVATIONS OF Edo Loenen, Leiden Observatory EXTRA GALACTIC STAR FORMATIONMESSIER.
The Global Star Formation Laws in Galaxies: Recent Updates Yu Gao Purple Mountain Observatory Chinese Academy of Sciences May 15, th sino-french.
D. B. Sanders Institute for Astronomy, University of Hawaii Gas-Rich Mergers and the origin of nuclear starbursts and AGN The Dusty and Molecular Universe:
Science with continuum data ALMA continuum observations: Physical, chemical properties and evolution of dust, SFR, SED, circumstellar discs, accretion.
Molecular Gas (Excitation) at High Redshift Fabian Walter Max Planck Institute for Astronomy Heidelberg Fabian Walter Max Planck Institute for Astronomy.
The reliability of [CII] as a SFR indicator Ilse De Looze, Suzanne Madden, Vianney Lebouteiller, Diane Cormier, Frédéric Galliano, Aurély Rémy, Maarten.
The Local Universe A CCAT perspective Christine Wilson McMaster University, Canada 7 January 20131AAS 221 – Long Beach, CA.
Warm Molecular Gas in Galaxies Rui-Qing Mao ( 毛瑞青 ) (Purple Mountain Observatory, Nanjing) C. Henkel (MPIfR) R. Mauersberger (IRAM) Dinh-Van-Trung (ASIAA)
Cosmic Rays: Gas Phase Astrophysics and Astrochemistry Marco Spaans (Groningen) Rowin Meijerink (Leiden), Edo Loenen (Leiden), Paul van der Werf (Leiden),
School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES The IR-mm spectrum of a starburst galaxy Paola Caselli Astrochemistry of the.
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
Molecular Line Studies and Chemistry in Interacting and Starburst Galaxies Susanne Aalto Department of Radio and Space Science With Onsala Space Observatory.
Héctor G. Arce Yale University Image Credit: ESO/ALMA/H. Arce/ B. Reipurth Shocks and Molecules in Protostellar Outflows.
CO Spectral Line Energy Distributions in Orion Sources: Templates for Extragalactic Observations Nick Indriolo & Ted Bergin University of Michigan June.
Der Paul van der Werf Leiden Observatory Dense gas in ULIRGs Crete September 15, 2008.
AKARI infrared 2-5um spectroscopy of nearby luminous infrared galaxies Masa Imanishi Subaru Telescope/NAOJ Spitzer AKARI AGN-starburst connections 2012.
SED of Galaxies in the IR–MM domain Frédéric Boone LERMA, Observatoire de Paris.
The Ionization Toward The High-Mass Star-Forming Region NGC 6334 I Jorge L. Morales Ortiz 1,2 (Ph.D. Student) C. Ceccarelli 2, D. Lis 3, L. Olmi 1,4, R.
XGAL 2016, Charlottesville, April 5 th 2016 Sergio Martín Ruiz Joint ALMA Office The unbearable opaqueness of obscured nuclei.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
Herschel 3.5m IRAM Plateau de Bure 6  12 x 15m
Topic: “Ionized atomic lines in high-z galaxies” K. Kohno (IoA/RESCEU) Journal Club June 15 th, 2012 “Ionized nitrogen at high redshift”, Decarli et al.
The CO SED and molecular gas properties in Early-Type Galaxies (ETGs)
Understanding Local Luminous Infrared Galaxies in the Herschel Era
Excitation of H2 in NGC 253 Marissa Rosenberg
Interferometric 3D observations of LIRGs
HERSCHEL and Galaxies/AGN “dust and gas”
Molecular Line Measurements of Luminous Infrared Galaxies (LIRGs) AO 4 David Cotten Alexandre Roman-Lopes Carol Lonsdale Ximena Fernandez Advisor: Chris.
Presentation transcript:

der Paul van der Werf Leiden Observatory Star formation and molecular gas in (U)LIRGs Sant Cugat April 17, 2012

Credits Kate Isaak (ESTEC) Padelis Papadopoulos (MPI für Radioastronomie) Marco Spaans (Kapteyn Astronomical Institute) Eduardo González-Alfonso (Henares) Rowin Meijerink (Leiden Observatory) Edo Loenen (Leiden Observatory) Alicia Berciano Alba (Leiden Observatory/ASTRON) Axel Weiß (MPI für Radioastronomie) + the HerCULES team 2 Molecular gas in (U)LIRGs

Conditions in ULIRGs  Starbursts cannot be simply scaled up. be simply scaled up.  More intense starbursts are also more efficient are also more efficient with their fuel. with their fuel. (Gao & Solomon 2001) L IR  SFR L IR / L CO  SFR/ M H 2 SFE 3Molecular gas in (U)LIRGs

(U)LIRGs from low to high z   LIRGs dominate cosmic star formation at high redshift 4 Molecular gas in (U)LIRGs (Magnelli et al. 2011)

ISM in luminous high-z galaxies 5  Even in ALMA era, limited spatial resolution on high-z galaxies.  For unresolved galaxies, multi-line spectroscopy will be a key diagnostic (Weiß et al. 2007) Molecular gas in (U)LIRGs (Danielson et al. 2010)

Outline   CO as a probe of the energy source un (U)LIRGs   H 2 O emission in (U)LIRGs   The X-factor in (U)LIRGs 6 Molecular gas in (U)LIRGs

HerCULES 7 Herschel Comprehensive (U)LIRG EmissionSurvey Open Time Key Program on the Herschel satellite Molecular gas in (U)LIRGs

Who is HerCULES? Paul van der Werf (Leiden; PI) Susanne Aalto (Onsala) Lee Armus (Spitzer SC) Vassilis Charmandaris (Crete) Kalliopi Dasyra (CEA) Aaron Evans (Charlottesville) Jackie Fischer (NRL) Yu Gao (Purple Mountain) Eduardo González-Alfonso (Henares) Thomas Greve (Copenhagen) Rolf G ü sten (MPIfR) Andy Harris (U Maryland) Chris Henkel (MPIfR) Kate Isaak (ESA) Frank Israel (Leiden) Carsten Kramer (IRAM) Edo Loenen (Leiden) Steve Lord (NASA Herschel SC) Jesus Martín-Pintado (Madrid) Joe Mazzarella (IPAC) Rowin Meijerink (Leiden) David Naylor (Lethbridge) Padelis Papadopoulos (Bonn) Dave Sanders (U Hawaii) Giorgio Savini (Cardiff/UCL) Howard Smith (CfA) Marco Spaans (Groningen) Luigi Spinoglio (Rome) Gordon Stacey (Cornell) Sylvain Veilleux (U Maryland) Cat Vlahakis (Leiden/Santiago) Fabian Walter (MPIA) Axel Wei ß (MPIfR) Martina Wiedner (Paris) Manolis Xilouris (Athens) 8 Molecular gas in (U)LIRGs

HerCULES in a nutshell   HerCULES has uniformly and statistically measured the neutral gas cooling lines in a flux-limited sample of 29 (U)LIRGs.   Sample:   all IRAS RBGS ULIRGs with S 60 > Jy (6 sources)   all IRAS RBGS LIRGs with S 60 > 16.8 Jy (23 sources)   Observations:   SPIRE/FTS full high-resolution scans: 200 to 670  m at R ≈ 600, covering CO 4 — 3 to 13 — 12 and [CI] + any other bright lines   PACS line scans of [CII] and both [OI] lines   All targets observed to same (expected) S/N   Extended sources observed at several positions 9 Molecular gas in (U)LIRGs

HerCULES sample Target log(L IR /L  ) Mrk IRAS F17207— IRAS 13120— Arp Mrk IRAS F05189— Arp NGC IRAS F18293— Arp IC NGC NGC NGC Target log(L IR /L  ) IC 4687/ NGC NGC MCG+12—02— Mrk IRAS 13242— NGC Zw NGC NGC IRAS F11506— NGC NGC NGC NGC Molecular gas in (U)LIRGs

Warning: may contain  quiescent molecular (and atomic) gas  star-forming molecular gas (PDRs)  AGN (X-ray) excited gas (XDRs)  cosmic ray heated gas  shocks  mechanically (dissipation of turbulence) heated gas  warm very obcured gas (hot cores) Molecular gas in (U)LIRGs

PDRs vs. XDRs Four differences:  X-rays penetrate much larger column densities than UV photons  Gas heating efficiency in XDRs is ≈10 — 50%, compared to <3% in PDRs  Dust heating much more efficient in PDRs than in XDRs  High ionization levels in XDRs drive ion-molecule chemistry over large column density 12 Molecular gas in (U)LIRGs

PDRs vs. XDRs: CO lines  XDRs produce larger column densities of warmer gas  Identical incident energy densities give very different CO spectra  Very high J CO lines are excellent XDR tracers  Need good coverage of CO ladder (Spaans & Meijerink 2008) 13 Molecular gas in (U)LIRGs

14 Mrk231 HST/ACS (Evans et al., 2008)  At z=0.042, one of the closest QSOs (D L =192 Mpc)  With L IR = 4  L , the most luminous ULIRG in the IRAS Revised bright Galaxy Sample  “Warm” infrared colours  Star-forming disk (~500 pc radius) + absorbed X-ray nucleus  Face-on molecular disk, M H 2 ~ 5  10 9 M  Molecular gas in (U)LIRGs

Mrk231 SPIRE FTS 15 (Van der Werf et al., 2010) Molecular gas in (U)LIRGs

CO excitation 2 PDRs + XDR 6.4:1:4.0 n=10 4.2, F X =28 * n=10 3.5, G 0 = n=10 5.0, G 0 = * 28 erg cm -2 s -1  G 0 = Molecular gas in (U)LIRGs

CO excitation 3 PDRs 6.4:1:0.03 n=10 6.5, G 0 = n=10 3.5, G 0 = n=10 5.0, G 0 = Molecular gas in (U)LIRGs

High-J lines: PDR or XDR?   High-J CO lines can also be produced by PDR with n= cm —3 and G 0 =10 5, containing half the molecular gas mass.   Does this work?   G 0 =10 5 only out to 0.3 pc from O5 star; then we must have half of the molecular gas and dust in 0.7% of volume.   With G 0 =10 5, 50% of the dust mass would be at 170K, which is ruled out by the Spectral Energy Distribution   [OH + ] and [H 2 O + ] > 10 —9 in dense gas requires efficient and penetrative source of ionization; PDR abundances factor 100— 1000 lower 18 Molecular gas in (U)LIRGs

High-J CO lines and AGNs Highly excited CO ladders are found in all high luminosity/compact sources with an energetically dominant AGN (and only in those sources). 19 Molecular gas in (U)LIRGs

Outline   CO as a probe of the energy source in (U)LIRGs   H 2 O emission in (U)LIRGs   The X-factor in (U)LIRGs 20 Molecular gas in (U)LIRGs

Water in molecular clouds  H 2 O ice abundant in molecular clouds  Can be released into the gas phase by UV photons, X-rays, cosmic rays, shocks,...  Can be formed directly in the gas phase in warm molecular gas  Abundant, many strong transitions  expected to be major coolant of warm, dense molecular gas 21 Molecular gas in (U)LIRGs Herschel image of (part of) the Rosetta Molecular Cloud

Molecular gas in (U)LIRGs 22 Low-z H 2 O: M82 vs. Mrk231  At D = 3.9 Mpc, one of the closest starburst galaxies  With L IR = 3  L , a very moderate starburst  At z=0.042, one of the closest QSOs (D L =192 Mpc)  With L IR = 4  L , the most luminous ULIRG in the IRAS Revised bright Galaxy Sample M82Mrk231

H 2 O lines in M82  Faint lines, complex profiles  Only lines of low excitation 23 Molecular gas in (U)LIRGs (Weiß et al., 2010)(Panuzzo et al., 2010)

Mrk231: strong H 2 O lines, high excitation 24 Molecular gas in (U)LIRGs (Van der Werf et al., González- Alfonso et al., 2010)

H 2 O lines in Mrk231  Low lines: pumping by cool component + some collisional excitation  High lines: pumping by warm component  Radiative pumping dominates and reveals an infrared-opaque (  100  m ~ 1) disk. (González-Alfonso et al., 2010) 25 Molecular gas in (U)LIRGs

High-z connection: H 2 O at z=3.9 26Molecular gas in (U)LIRGs  Line ratios similar to Mrk231  FIR pumping dominates, implies 100  m-opaque disk  Radiation pressure dominates, Eddington-limited Van der Werf et al., 2011

H 2 O in HerCULES Target log(L IR /L  ) Mrk IRAS F17207— IRAS 13120— Arp Mrk IRAS F05189— Arp NGC IRAS F18293— Arp IC NGC NGC NGC Target log(L IR /L  ) IC 4687/ NGC NGC MCG+12—02— Mrk IRAS 13242— NGC Zw NGC IRAS F11506— NGC NGC NGC NGC Molecular gas in (U)LIRGs red = wet

Lessons from H 2 O ( ) 28Molecular gas in (U)LIRGs 1) In spite of high luminosities, H 2 O lines are unimportant for cooling the warm molecular gas. 2) Radiatively H 2 O lines reveal extended infrared-opaque circumnuclear gas disks. 3) Extinction and radiative pumping of highest CO lines.4) Detection of H 2 O lines implies high FIR radiation field, but not the presence of an AGN.

Lessons from H 2 O (5) Radiation pressure from the strong IR radiation field: 29Molecular gas in (U)LIRGs Since both  100 and T d are high, radiation pressure dominates the gas dynamics in the circumnuclear disk. 5) Conditions in the circumnuclear molecular disk are Eddington-limited.

Mechanical feedback   Radiation pressure can drive the observed molecular outflows (e.g., Murray et al., 2005)   Aalto et al., 2012: flow prominent in HCN  dense gas   Key process in linking ULIRGs and QSOs?   Shocks probably of minor importance in Mrk Molecular gas in (U)LIRGs (Feruglio et al., 2010) (Fischer et al., 2010)

Possible consequences   Eddington-limited conditions account for L FIR -L HCN relation within factor 2 for standard dust/gas ratio (Andrews & Thompson 2011)   If accreting towards nuclear SMBH, can account for M * /M  relation (Thompson et al., 2005)   Radiation pressure can expel nuclear fuel and produce Faber- Jackson relation (Murray et al., 2005) 31 Molecular gas in (U)LIRGs (Andrews & Thompson, 2011)

Outline   CO as a probe of the energy source in (U)LIRGs   H 2 O emission in (U)LIRGs   The X-factor in (U)LIRGs 32 Molecular gas in (U)LIRGs

The X-factor   Converting CO flux (luminosity) into H 2 column density (mass): (MW:  =4; ULIRGs:  =0.8) Warning: discussions of the X- factor have been the death-blow for many conferences. 33 Molecular gas in (U)LIRGs (Papadopoulos, Van der Werf, Isaak & Xilouris, astro-ph/ ) (U)LIRG sample

The X-factor and optical depth Highly turbulent motions  low optical depths (  high 12 CO/ 13 CO line ratios)  low X-factor (e.g., ULIRGs: X=0.8,Downes & Solomon 1997) 34 Molecular gas in (U)LIRGs NB: T line is T b of the line, not kinetic temperature

Calculating X-factors   Sample of 70 (U)LIRGs, 12 CO 1  0, 2  1, 3  2, (4  3, 6  5) and 13 CO 1  0, (2  1) lines   2 component model: high excitation and low excitation component   X-factor explicitly calculated using non-LTE excitation model and finite optical depths 35 Molecular gas in (U)LIRGs

X-factors based on low CO lines only Assumptions:   One gas component   Based on low-J CO lines only Results:   X-factors cluster between 0.5 and 1 (cf., Downes/Solomon value of 0.8 for ULIRGs) with tail up to and exceeding Milky Way values   Subthermal excitation But:   Higher CO lines and density tracing lines reveal a substantial dense gas component 36 Molecular gas in (U)LIRGs (Papadopoulos, Van der Werf, Isaak & Xilouris, astro-ph/ ) (U)LIRG sample

X-factors in a 2-component model Assumptions:   Orion-like high excitation component (probably not needed with denser coverage of CO ladder  Herschel)   Radiation pressure supported disk  L FIR /M(star forming gas) = constant (observed: L FIR /L HCN = constant; e.g., Gao & Solomon, Wu et al.) Results:   X-factors in (U)LIRGs dominated by dense, star-forming gas   X-factors have values of the order 2  4 (i.e., significantly higher than the Downes/Solomon value of 0.8) 37 Molecular gas in (U)LIRGs

Summary: getting at X   Derive X from 12 CO 1  0  6  CO 1  0 (or 2  1); ideally, use HCN (or HCO + or CS) lines as well   Can be used at high z too, but 13 CO is challenging   Aside: why did Downes & Solomon get it right (for the low-J lines) without 13 CO?   High quality data showing turbulent velocity field   Correctly produced low optical depth   Getting the optical depth right is key 38 Molecular gas in (U)LIRGs

Summary 39 Molecular gas in (U)LIRGs  CO-H 2 conversion factor can be derived from multi-line CO data (up to J=6) – see Papadopoulos et al., 2012ab (astro-ph/ and )  Multi-line CO data (up to at least J=11) can separate star formation and AGN accretion as power sources of unresolved galaxies (vdW et al., 2010)  Luminous H 2 O lines trace infrared-opaque nuclear disks and reveal Eddington- limited circumnuclear conditions (vdW et al., 2011)  Strong shocks are only a minor contributor to CO excitation, barring exceptional cases (in preparation).  OH + emission requires a high electron abundance and forms another way to reveal XDRs (in preparation).