Dedicated to the memory of Z.G.Pinsker. (on the occasion of his 100 th anniversary ) ELECTRON DIFFRACTION STRUCTURE ANALYSIS, PART 1. Vera KLECHKOVSKAYA.

Slides:



Advertisements
Similar presentations
24.6 Diffraction Huygen’s principle requires that the waves spread out after they pass through slits This spreading out of light from its initial line.
Advertisements

Reciprocal Space Learning outcomes
Fundamental Concepts Crystalline: Repeating/periodic array of atoms; each atom bonds to nearest neighbor atoms. Crystalline structure: Results in a lattice.
Chap 8 Analytical Instruments. XRD Measure X-Rays “Diffracted” by the specimen and obtain a diffraction pattern Interaction of X-rays with sample creates.
X-ray Diffraction. X-ray Generation X-ray tube (sealed) Pure metal target (Cu) Electrons remover inner-shell electrons from target. Other electrons “fall”
Crystal diffraction Laue Nobel prize Max von Laue
What is diffraction? Diffraction – the spreading out of waves as they encounter a barrier.
Planes in Lattices and Miller Indices
Determination of Crystal Structures by X-ray Diffraction
CHAPTER 2 : CRYSTAL DIFFRACTION AND PG Govt College for Girls
VI. Reciprocal lattice 6-1. Definition of reciprocal lattice from a lattice with periodicities in real space Remind what we have learned in chapter.
Lec. (4,5) Miller Indices Z X Y (100).
Solid Crystallography
Solid State Physics 2. X-ray Diffraction 4/15/2017.
1 Experimental Determination of Crystal Structure Introduction to Solid State Physics
Chem Single Crystals For single crystals, we see the individual reciprocal lattice points projected onto the detector and we can determine the values.
I am not an expert on any of this!
Yat Li Department of Chemistry & Biochemistry University of California, Santa Cruz CHEM 146C_Experiment #3 Identification of Crystal Structures by Powder.
Expression of d-dpacing in lattice parameters
© Oxford Instruments Analytical Limited 2001 MODULE 2 - Introduction to Basic Crystallography Bravais Lattices Crystal system Miller Indices Crystallographic.
CONDENSED MATTER PHYSICS PHYSICS PAPER A BSc. (III) (NM and CSc.) Harvinder Kaur Associate Professor in Physics PG.Govt College for Girls Sector -11, Chandigarh.
Order in crystals Symmetry, X-ray diffraction. 2-dimensional square lattice.
IPCMS-GEMME, BP 43, 23 rue du Loess, Strasbourg Cedex 2
Structure of Solids Objectives
Analysis of crystal structure x-rays, neutrons and electrons
Exercise: Indexing of the electron diffraction patterns
The Effects of Symmetry in Real and Reciprocal Space Sven Hovmöller, Stockholm Univertsity Mirror symmetry 4-fold symmetry.
Analysis of XRD Test.
CHE (Structural Inorganic Chemistry) X-ray Diffraction & Crystallography lecture 2 Dr Rob Jackson LJ1.16,
Miller Indices And X-ray diffraction
Introduction to Crystallography
Lecture 3:Diffraction and Symmetry. Diffraction A characteristic of wave phenomena, where whenever a wavefront encounters an obstruction that alters the.
PH 0101 UNIT 4 LECTURE 1 INTRODUCTION TO CRYSTAL PHYSICS
X. Low energy electron diffraction (LEED)
Remember Miller Indices?
Define the Crystal Structure of Perovskites
Crystallography and Diffraction Theory and Modern Methods of Analysis Lectures 1-2 Introduction to Crystal Symmetry Dr. I. Abrahams Queen Mary University.
PHYS 430/603 material Laszlo Takacs UMBC Department of Physics
Diffraction Basics Coherent scattering around atomic scattering centers occurs when x-rays interact with material In materials with a crystalline structure,
Chem Patterson Methods In 1935, Patterson showed that the unknown phase information in the equation for electron density:  (xyz) = 1/V ∑ h ∑ k.
Chem Structure Factors Until now, we have only typically considered reflections arising from planes in a hypothetical lattice containing one atom.
W.D. Callister, Materials science and engineering an introduction, 5 th Edition, Chapter 3 MM409: Advanced engineering materials Crystallography.
X-ray diffraction. Braggs' law = 2d hkl sin  hkl X-ray diffraction From this set of planes, only get reflection at one angle -  From this set of planes,
Crystallography and Diffraction. Theory and Modern Methods of Analysis Lectures Electron Diffraction Dr. I. Abrahams Queen Mary University of London.
Molecular Crystals. Molecular Crystals: Consist of repeating arrays of molecules and/or ions.
Page 1 X-ray crystallography: "molecular photography" Object Irradiate Scattering lens Combination Image Need wavelengths smaller than or on the order.
Lesson 13 How the reciprocal cell appears in reciprocal space. How the non-translational symmetry elements appear in real space How translational symmetry.
PHY1039 Properties of Matter Crystallography, Lattice Planes, Miller Indices, and X-ray Diffraction (See on-line resource: )
Crystalline Solids :-In Crystalline Solids the atoms are arranged in some regular periodic geometrical pattern in three dimensions- long range order Eg.
Protein Structure Determination Lecture 4 -- Bragg’s Law and the Fourier Transform.
ESO 214: Nature and Properties of Materials
Calculation of Structure Factors
X-Ray Diffraction Spring 2011.
Properties of engineering materials
IPCMS-GEMME, BP 43, 23 rue du Loess, Strasbourg Cedex 2
Basic Crystallography for X-ray Diffraction Earle Ryba.
Crystal Structure and Crystallography of Materials Chapter 13: Diffraction Lecture No. 1.
X-RAY METHODS FOR ORIENTING CRYSTALS
SHKim 2007 Lecture 4 Reciprocal lattice “Ewald sphere” Sphere of reflection (diffraction) Sphere of resolution.
X-ray Diffraction & Crystal Structure Analysis
CHARACTERIZATION OF THE STRUCTURE OF SOLIDS
Properties of engineering materials
Interplanar distances and angles
X-ray diffraction.
X-Ray Diffraction and Reciprocal Lattice
X-ray Neutron Electron
Bragg’s Law, the Reciprocal Lattice and the Ewald Sphere Construction
Electron diffraction Øystein Prytz.
MILLER PLANES Atoms form periodically arranged planes Any set of planes is characterized by: (1) their orientation in the crystal (hkl) – Miller indices.
MODULE 2 - Introduction to Basic Crystallography
Presentation transcript:

Dedicated to the memory of Z.G.Pinsker. (on the occasion of his 100 th anniversary ) ELECTRON DIFFRACTION STRUCTURE ANALYSIS, PART 1. Vera KLECHKOVSKAYA Institute of Crystallography, Russian Academy of Sciences SPECIMENS AND THEIR ELECTRON DIFFRACTION PATTERNS.

The basic modern data describing the atomic structure of matter have been obtained by the using of three diffraction methods – X-ray, neutron and electron. Electron diffraction structure analysis is generally used to study thin films and finely dispersed crystalline materials and allows the complete structure determinations up to establishment of the atomic coordinates in the crystal lattice and refinement of atomic thermal vibrations and chemical bounding.

All three radiations are used not only for the structure analysis of various crystals but also for the analysis of other condensed state of matter – quasi crystals, incommensurate phases, and partly disordered systems, namely, for high-molecular polymers, liquid crystals, amorphous substances and liquids, and isolated molecules in vapor and gases.

SCHEMATIC ILLUSTRATING BRANCHES OF MODERN CRYSTALLOGRAPHY, THEIR APPLICATIONS, AND THE RELATION OF CRYSTALLOGRAPHY TO THE NATURAL SCIENCES “Heart”of this scheme

ZINOVII PINSKER BORIS VAINSHTEIN 1904 – “The PARENTS” OF ELECTRON DIFFRACTION STRUCTURE ANALYSIS

Electron Diffraction Camera have been constructed by Z.Pinsker and B.Vainshtein -- gold medal on the International Exhibition in Brussels, 1958.

the classical monographs: B.K.Vainshtein (1964) Structure analysis by electron diffraction. Oxford, Pergamon Press (in Russia,1956) Z.G.Pinsker (1953) Electron diffraction. London: Butterwords (in Russia, 1949)

MAIN STAGES OF ATOMIC STRUCTURE ANALYSIS  the obtaining of appropriate diffraction patterns and their geometrical analysis,  the precision evaluation of diffraction-reflection intensities,  the use of the appropriate formulas for recalculation of the reflection intensities into the structure factors, I hkl ~ K kin |F hkl | 2 + K dyn |F hkl |  the solution of the phase problem,  Fourier analysis of the structure.  xyz) = 1/   F hkl exp[2  i (hx+ky+lz)] hkl

ELECTRON DIFFRACTION PATTERNS transmission and reflection mode

ELECTRON DIFFRACTION PATTERNS FOR STRUCTURE ANALYSIS UNKNOWN PHASES ONLY THREE TYPE SPECIMENS AND ELECTRON DIFFRACTION PATTERNS MAY BE USED FOR ATOMIC STRUCTURE ANALYSIS UNKNOWN PHASES MOSAIC SINGLE CRYSTALPLATELIKE TEXTUREPOLYCRYSTAL

EWALD CONSTRUCTION FOR X-RAY END ELECTRON k 0, k – wave-vectors, - wave – length, a*, b* - parameters of reciprocal unit cell THE RECIPROCAL LATTICE NET IS SAMPLED BY AN EWALD SCHERE ON RADIUS k 0 =1/. SINCE THE WAVELENGTH OF A 100 kV ELECTRON BEAM IS SOME 40 TIMES AS SMALL AS THAT OF A CuK  X-RAY, IT IS OFTEN A SUFFICIENT APPROXIMATION TO SAY THAT THE EWALD SAMPLING SURFACE IS A PLANE IN THE CASE OF ELECTRONS. GEOMETRICAL ASPECTS OF ELECTRON DIFFRACTION

SPOT-TYPE ELECTRON DIFFRACTION PATTERNS A CRYSTAL REPRESENT A THREE DIMENTIONAL PERIODIC DISTRIBUTION OF SCATTERING MATERIAL. THE DISTRIBUTION OF POINTS AT WHICH THE SCATTERING AMPLITUDE DIFFERS FROM ZERO AND TAKES ON THE VALUE F hkl IS PERIODIC IN RECIPROCAL SPACE AND FORMS THE SO-CALLED RECIPROCAL LATTICE H hkl = ha* + kb* = lc* a*, b*, c* are axial vectors, h,k,l are point indices A SPOT PATTERN REPRESENTED A PARTICULAR PLANE OF THE RECIPROCAL LATTICE PASSING THROUGH OF THE POINT 000

INDEXING OF AN ELECTRON DIFFRACTION PATTERN OF MOSAIC SINGLE CRYSTAL A spot pattern is most conveniently characterized by the general symbol of the reflection located on it. If the plane is a coordinate one of the indices must be equal to zero since the point 000 always lies in it. If the plane is non-coordinate, then none of its three indices (hkl) is equal to zero. Coordinate plane Non-coordinate plane

SYMMETRY OF ELECTRON DIFFRACTION SPOT PATTERNS Schematic representation of the structure of the zero layer of the reciprocal lattice for the six classes of geometry in spot electron diffraction patterns The existence of a centre of symmety at a point 000 of the reciprocal lattice of symmetry being recognizable in diffraction phenomena, for only 11 classes of symmetry being recognizable in diffraction phenomena, although 32 classes of crystal symmetry exist. The symmetry of electron diffraction pattern is the symmetry of the plane nets of reciprocal lattice.

The relationships between the axis and angles in unit cells: Triclinic: a  b  c    Monoclinic: a  b  c  =   Orthorhombic: a  b  c  =  =  =90 0 Hexagonal: a = b  c  =  = 90 0   Tetragonal: a = b  c  =  =  = 90 0 Cubic: a = b = c  =  =  = 90 0 Having only one plane of reciprocal lattice for unknown crystal we can`t determined – this is coordinate oder non-coordinate plane. And we have not an information about perpendicular direction for this plane.

Interrelationship between three reciprocal lattice section, i.e. between three electron diffraction patterns of different zones. Schematic representation of the rotation method There are two way: rotation method and to have three patterns of different zones

POLYCRYSTAL-TYPE ELECTRON DIFFRACTION PATTERN Electron diffraction patterns from samples containing very large number of small randomly distributed crystals consist of continuous rings. The radii of the rings are inversely proportional to the interplanar spacings d hkl of a lattice planes of crystals. The formula r hkl d hkl = L, (r- radius of the ring) is used. In reciprocal lattice of a polycrystal is obtained by “spherical rotation” of a reciprocal lattice of a single crystal around a fixed 000 point. It forms a system of sphere placed one inside the other. A section through such a system of spheres produces a system of rings. Thus geometry of a polycrystalline pattern is a set of lengths H hkl, i.e. a set of interplanar distances d hkl of a crystal lattice.

The calculation for orthogonal lattices Simple division gives all d h00 = a/h, and, analogously, d 0k0 and d 00l. Further, using the scale, all d hk0 are found from (d hkl ) = (d hk0 ) + (d oko ), then by fixing first l = 1 (one setting of the movable scale) and finding all d hk1, and repeating this operation METHOD OF INVERSE SQUARES The quadratic form for orthorhombic crystals is: 1/d 2 hkl = h 2 /a 2 + k 2 /b 2 + l 2 /c 2. a – inverse scuares scale, b – method of finding d hk by using the mouvable scale

OBLIQUE TEXTURE ELECTRON DIFFRACTION PATTERNS Distribution of reciprocal lattice points Distribution of circular scattering of a plate texture along straight lines regions of the reciprocal lattice of a parallel to the texture axis and texture on coaxial cylinders. perpendicular to the face lying on the support.

FORMATION of the circular scattering regions (rings) in the reciprocal lattice of a texture, and relationship between their shape and the structure of the specimen Transition from a point to a ring (a), for an ideal texture without disorder (c) and having distribution function (e) (d,f) – corresponding diagrams for a real texture with some disorder.

PROJECTION NET AND THE CORRESPONDING SET OF R hk VALUES FIVE PLANE CRYSTALLOGRAPHIC SYSTEMS OF POINTS If there are layer lines on the pattern (for orthogonal lattice), for a zero layer line, R hk = H hk0. Thus having a set of values : R 2 hk = h 2 A 2 + k 2 B 2 + 2hkAB cos  ` R = r (L ) -1 We can determined constant A,B,  ` of The two-dimensional lattice.

DETERMINATION OF PERIOD c* and ANGLES  The best formed plate textures are found in crystals with a layer lattice. For the reciprocal lattice of plate texture, the distribution of points along vertical strain lines, parallel to axis z, is characteristic. An important part is played by the modulus of vector H hkl. H hkl = x 2 + y 2 + z 2 =R 2 + z 2 Orthogonal unit cells

The doubling of the number of circular scattering regions in the reciprocal lattice of a texture and therefore the number of reflections on the ellipse of a pattern for a non-orthogonal unit cell.

CONCLUSION Mosaic single crystal, polycrystal, texture electron diffraction patterns provide valuable material for calculation the parameters of unit cell and then may be used for complete structural investigations of the crystal with unknown atomic structure.