Physics 201: Lecture 15, Pg 1 Lecture 15 l Goals  Employ conservation of momentum in 1 D & 2D  Introduce Momentum and Impulse  Compare Force vs time.

Slides:



Advertisements
Similar presentations
Physics 207: Lecture 13, Pg 1 Lecture 13 Goals: Assignment: l HW6 due Wednesday, Feb. 11 l For Thursday: Read all of Chapter 11 Chapter 10 Chapter 10 
Advertisements

SPH4U Agenda Impulse Collisions: you gotta conserve momentum!
Momentum.
Physics 207: Lecture 16, Pg 1 Lecture 16Goals: Chapter 12 Chapter 12  Extend the particle model to rigid-bodies  Understand the equilibrium of an extended.
Momentum and Collisions
Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.
Center of Mass and Linear Momentum
Physics C Energy 4/16/2017 Linear Momentum Bertrand.
Momentum Impulse, Linear Momentum, Collisions Linear Momentum Product of mass and linear velocity Symbol is p; units are kgm/s p = mv Vector whose direction.
AP Physics Review Ch 7 – Impulse and Momentum
Physics 207: Lecture 17, Pg 1 Lecture 17 Goals: Chapter 12 Chapter 12  Define center of mass  Analyze rolling motion  Introduce and analyze torque 
Chapter 7 Impulse and Momentum.
Physics 151: Lecture 19, Pg 1 Physics 151: Lecture 19 Today’s Agenda l Topics çExample problem (conservation of momentum) çImpulseCh. 9.2 çCenter of MassCh.
Physics 151: Lecture 18, Pg 1 Physics 151: Lecture 18 Today’s Agenda l Topics çReview of momentum conservation ç2-D Collisions çSystems of particles.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lectures
Linear Momentum Lecturer: Professor Stephen T. Thornton
Physics 207: Lecture 14, Pg 1 Lecture 14Goals: Assignment: l l HW6 due Tuesday Oct. 26 th l l For Monday: Read Ch. 11 Chapter 10 Chapter 10   Understand.
Physics 207: Lecture 14, Pg 1 Lecture 14Goals: Assignment: l l HW6 due Tuesday Oct. 25 th l l For Monday: Read Ch. 11 Chapter 10 Chapter 10   Understand.
Law of Conservation of Momentum. If the resultant external force on a system is zero, then the vector sum of the momentums of the objects will remain.
Chapter 7: Linear Momentum (p)
Collisions & Center of Mass Lecturer: Professor Stephen T. Thornton
Center of Mass and Linear Momentum
Linear Momentum and Collisions
Physics 1501: Lecture 18, Pg 1 Physics 1501: Lecture 18 Today’s Agenda l Announcements çHW#7: due Oct. 21 l Midterm 1: average = l Topics çImpulse çCenter.
Classical Mechanics Review 4: Units 1-19
Momentum and Collisions Review
Chapter 6 Linear Momentum. Momentum  Momentum is defined as the product of mass and velocity.  p = m·v  Momentum is measured in [kg·m/s]  Momentum.
Momentum is a Momentum vectors Impulse Defined as a Impulse is.
Momentum and Collisions
Physics 1501: Lecture 17, Pg 1 Physics 1501: Lecture 17 Today’s Agenda l Homework #6: due Friday l Midterm I: Friday only l Topics çChapter 9 »Momentum.
Physics 207: Lecture 13, Pg 1 Physics 207, Lecture 13, Oct. 18 Agenda: Chapter 9, finish, Chapter 10 Start Assignment: For Monday read through Chapter.
Physics 215 – Fall 2014Lecture Welcome back to Physics 215 Today’s agenda: More on momentum, collisions Kinetic and potential energy Potential energy.
Physics 201: Lecture 19, Pg 1 Lecture 19 Goals: Specify rolling motion (center of mass velocity to angular velocity Compare kinetic and rotational energies.
Physics 201: Lecture 20, Pg 1 Lecture 20 Goals: Revisit vector cross product Introduce angular momentum Discuss conservation of angular momentum.
Problems Ch(1-3).
When the axis of rotation is fixed, all particles move in a circle. Because the object is rigid, they move through the same angular displacement in the.
Chapter 7 Linear Momentum. MFMcGraw-PHY 1401Chap07b- Linear Momentum: Revised 6/28/ Linear Momentum Definition of Momentum Impulse Conservation.
Physics 207: Lecture 11, Pg 1 Lecture 11 l Goals:  Employ Newton’s Laws in 2D problems with circular motion  Relate Forces with acceleration Assignment:
Physics 207: Lecture 10, Pg 1 Lecture 10 l Goals:  Exploit Newton’s 3 rd Law in problems with friction  Employ Newton’s Laws in 2D problems with circular.
Linear Momentum Impulse & Collisions. What is momentum?  Momentum is a measure of how hard it is to stop or turn a moving object.  What characteristics.
Physics 203 – College Physics I Department of Physics – The Citadel Physics 203 College Physics I Fall 2012 S. A. Yost Chapter 7 Part 2 Momentum and Collisions.
Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10, 1 st four section l MP HW6, due Wednesday 3/3 Chapter 8: Employ.
Lecture 12 Momentum & Impulse. Lecture 12 Goals: Momentum & Impulse Momentum & Impulse  Solve problems with 1D and 2D Collisions  Solve problems having.
Physics 207: Lecture 14, Pg 1 Lecture 14Goals: Assignment: l l HW6 due Wednesday, Mar. 11 l l For Tuesday: Read Chapter 12, Sections 1-3, 5 & 6 ” do not.
Systems of Particles. Rigid Bodies Rigid Bodies - A collection of particles that do not move relative to each other. What forces are present with the.
Linear Momentum October 31, Announcements Turn in homework due today:  Chapter 8, problems 28,29,31  Next week, W-F, Rocket Project.
Physics 207: Lecture 16, Pg 1 Lecture 16Goals: Chapter 12 Chapter 12  Extend the particle model to rigid-bodies  Understand the equilibrium of an extended.
Unbalanced Forces. Topic Overview A force is a push or a pull applied to an object. A net Force (F net ) is the sum of all the forces on an object (direction.
Welcome back to Physics 215
Chapter 9 Linear Momentum and Collisions. Momentum 2 Linear momentum of object: mass × velocity Magnitude: p=mv, Direction: same as velocity Quantity.
Physics 207: Lecture 15, Pg 1 Lecture 15 Goals: Chapter 11 (Work) Chapter 11 (Work)  Employ conservative and non-conservative forces  Relate force to.
Phys211C8 p1 Momentum everyday connotations? physical meaning the “true” measure of motion (what changes in response to applied forces) Momentum (specifically.
3.1 Work 3.2 Energy 3.3 Conservative and nonconservative forces 3.4 Power, energy and momentum conservation 3.5 Linear momentum 3.6 Collisions 3.7 Motion.
Physics 207: Lecture 13, Pg 1 Lecture 13 Goals: Assignments: l HW5, due tomorrow l For Wednesday, Read all of Chapter 10 Chapter 9 Chapter 9  Employ.
Physics 207: Lecture 11, Pg 1 "Professor Goddard does not know the relation between action and reaction and the need to have something better than a vacuum.
Physics 207: Lecture 17, Pg 1 Lecture 17 (Catch up) Goals: Chapter 12 Chapter 12  Introduce and analyze torque  Understand the equilibrium dynamics of.
Physics 207: Lecture 15, Pg 1 Lecture 15 Goals: Chapter 10 Chapter 10  Employ conservation of energy principle Chapter 11 Chapter 11  Employ the dot.
Physics 207: Lecture 12, Pg 1 Lecture 12 Goals: Assignment: l HW5 due Tuesday 10/18 l For Monday: Read through Ch (Reading Quiz) Chapter 8: Chapter.
Lecture 12 Chapter 9: Momentum & Impulse
Lecture 12 Chapter 8: Solve 2D motion problems with friction
Physics 111: Lecture 13 Today’s Agenda
General Physics I Momentum
Physics 207, Lecture 12, Oct. 15 Assignment: HW5 due Wednesday
"Correction: It is now definitely established that a rocket can
Physics 207, Lecture 12, Oct. 13 Chapter 9: Momentum & Impulse
Lecture 12 Chapter 9: Momentum & Impulse
Physics 207, Lecture 11, Oct. 8 Chapter 9: Momentum & Impulse
Chapter 9: Linear Momentum and Collisions
Lecture 14 Goals More Energy Transfer and Energy Conservation
Lecture 13 Goals: Chapter 9 Employ conservation of momentum in 2D
Presentation transcript:

Physics 201: Lecture 15, Pg 1 Lecture 15 l Goals  Employ conservation of momentum in 1 D & 2D  Introduce Momentum and Impulse  Compare Force vs time to Force vs distance  Introduce Center-of-Mass Note: 2 nd Exam, Monday, March 19 th, 7:15 to 8:45 PM

Physics 201: Lecture 15, Pg 2 Comments on Momentum Conservation l More general than conservation of mechanical energy l Momentum Conservation occurs in systems with no net external forces (as a vector quantity)

Physics 201: Lecture 15, Pg 3 Explosions: A collision in reverse l A two piece assembly is hanging vertically at rest at the end of a 20 m long massless string. The mass of the two pieces are 60 and 20 kg respectively. Suddenly you observe that the 20 kg is ejected horizontally at 30 m/s. The time of the “explosion” is short compared to the swing of the string. l Does the tension in the string increase or decrease after the explosion? l If the time of the explosion is short then momentum is conserved in the x-direction because there is no net x force. This is not true of the y-direction but this is what we are interested in. Before After

Physics 201: Lecture 15, Pg 4 Explosions: A collision in reverse l A two piece assembly is hanging vertically at rest at the end of a 20 m long massless string. The mass of the two pieces are 60 and 20 kg respectively. Suddenly you observe that the 20 kg mass is ejected horizontally at 30 m/s. l Decipher the physics: 1. The green ball recoils in the –x direction (3 rd Law) and, because there is no net external force in the x-direction the x-momentum is conserved. 2. The motion of the green ball is constrained to a circular path…there must be centripetal (i.e., radial acceleration) Before After

Physics 201: Lecture 15, Pg 5 Explosions: A collision in reverse l A two piece assembly is hanging vertically at rest at the end of a 20 m long massless string. The mass of the two pieces are 60 & 20 kg respectively. Suddenly you observe that the 20 kg mass is suddenly ejected horizontally at 30 m/s. l Cons. of x-momentum p x before = p x after = 0 = - M V + m v V = m v / M = 20*30/ 60 = 10 m/s T before = Weight = (60+20) x 10 N = 800 N  F y = m a cy = M V 2 /r = T – Mg T = Mg + MV 2 /r = 600 N + 60x(10) 2 /20 N = 900 N After Before

Physics 201: Lecture 15, Pg 6 Exercise Momentum is a Vector (!) quantity A. Yes B. No C. Yes & No D. Too little information given l A block slides down a frictionless ramp and then falls and lands in a cart which then rolls horizontally without friction l In regards to the block landing in the cart is momentum conserved?

Physics 201: Lecture 15, Pg 7 Exercise Momentum is a Vector (!) quantity Let a 2 kg block start at rest on a 30 ° incline and slide vertically a distance 5.0 m and fall a distance 7.5 m into the 10 kg cart What is the final velocity of the cart? l x-direction: No net force so P x is conserved. l y-direction: Net force, interaction with the ground so depending on the system (i.e., do you include the Earth?) p y is not conserved (system is block and cart only) 5.0 m 30 ° 7.5 m 10 kg 2 kg

Physics 201: Lecture 15, Pg 8 Exercise Momentum is a Vector (!) quantity Initial Final P x : MV x + mv x = (M+m) V ’ x M 0 + mv x = (M+m) V ’ x V ’ x = m v x / (M + m) = 2 (8.7)/ 12 m/s V ’ x = 1.4 m/s l x-direction: No net force so P x is conserved l y-direction: v y of the cart + block will be zero and we can ignore v y of the block when it lands in the cart. 5.0 m 30 ° 7.5 m N mg 1) a i = g sin 30°  = 5 m/s 2 2) d = 5 m / sin 30° = ½ a i  t 2 10 m = 2.5 m/s 2  t 2 2s =  t v = a i  t = 10 m/s v x = v cos 30° = 8.7 m/s i j x y 30 °

Physics 201: Lecture 15, Pg 9 Impulse (A variable external force applied for a given time) l Collisions often involve a varying force F(t): 0  maximum  0 I l We can plot force vs time for a typical collision. The impulse, I, of the force is a vector defined as the integral of the force during the time of the collision. l The impulse measures momentum transfer

Physics 201: Lecture 15, Pg 10 Force and Impulse (A variable force applied for a given time) F l J a vector that reflects momentum transfer t titi tftf tt Impulse I = area under this curve ! (Transfer of momentum !) Impulse has units of Newton-seconds

Physics 201: Lecture 15, Pg 11 Force and Impulse l Two different collisions can have the same impulse since I depends only on the momentum transfer, NOT the nature of the collision. tt F t F t tt same area F  t big, F small F  t small, F big

Physics 201: Lecture 15, Pg 12 Average Force and Impulse tt F t F t tt  t big, F av small  t small, F av big F av

Physics 201: Lecture 15, Pg 13 Exercise Force & Impulse A. heavier B. lighter C. same D. can’t tell l Two boxes, one heavier than the other, are initially at rest on a horizontal frictionless surface. The same constant force F acts on each one for exactly 1 second. Which box has the most momentum after the force acts ? FF light heavy

Physics 201: Lecture 15, Pg 14 Discussion Exercise l The only force acting on a 2.0 kg object moving along the x- axis. Notice that the plot is force vs time. l If the velocity v x is +2.0 m/s at 0 sec, what is v x at 4.0 s ?  p = m  v = Impulse m  v = I 0,1 + I 1,2 + I 2,4 m  v = (-8)1 N s + ½ (-8)1 N s + ½ 16(2) N s m  v = 4 N s  v = 2 m/s v x = m/s = 4 m/s

Physics 201: Lecture 15, Pg 15 A perfectly inelastic collision in 2-D l Consider a collision in 2-D (cars crashing at a slippery intersection...no friction). vv1vv1 vv2vv2 V beforeafter m1m1 m2m2 m 1 + m 2 l If no external force momentum is conserved. l Momentum is a vector so p x, p y and p z 

Physics 201: Lecture 15, Pg 16 A perfectly inelastic collision in 2-D vv1vv1 vv2vv2 V beforeafter m1m1 m2m2 m 1 + m 2 x-dir p x : m 1 v 1 = (m 1 + m 2 ) V cos  y-dir p y : m 2 v 2 = (m 1 + m 2 ) V sin  l If no external force momentum is conserved. l Momentum is a vector so p x, p y and p z are conseved 

Physics 201: Lecture 15, Pg 17 2D Elastic Collisions l Perfectly elastic means that the objects do not stick and, by stipulation, mechanical energy is conservsed. l There are many more possible outcomes but, if no external force, then momentum will always be conserved BeforeAfter

Physics 201: Lecture 15, Pg 18 Billiards l Consider the case where one ball is initially at rest. p p a  ppbppb F PPa PPa  before after The final direction of the red ball will depend on where the balls hit. v v cm

Physics 201: Lecture 15, Pg 19 Billiards: Without external forces, conservation of both momentum & mech. energy l Conservation of Momentum x-dir P x : m v before = m v after cos  + m V after cos  y-dir P y : 0 = m v after sin  + m V after sin  p p after  ppbppb F P P after  before after If the masses of the two balls are equal then there will always be a 90 ° angle between the paths of the outgoing balls

Physics 201: Lecture 15, Pg 20 Center of Mass l Most objects are not point-like but have a mass density and are often deformable. l So how does one account for this complexity in a straightforward way? Example l In football coaches often tell players attempting to tackle the ball carrier to look at their navel. l So why is this so?

Physics 201: Lecture 15, Pg 21 System of Particles: Center of Mass (CM) l If an object is not held then it will rotate about the center of mass. l Center of mass: Where the system is balanced !  Building a mobile is an exercise in finding centers of mass. m1m1 m2m2 + m1m1 m2m2 + mobile

Physics 201: Lecture 15, Pg 22 System of Particles: Center of Mass l How do we describe the “position” of a system made up of many parts ? l Define the Center of Mass (average position):  For a collection of N individual point-like particles whose masses and positions we know: (In this case, N = 2) y x r2r2 r1r1 m1m1 m2m2 R CM

Physics 201: Lecture 15, Pg 23 Momentum of the center-of-mass is just the total momentum l Notice l Impulse and momentum conservation applies to the center-of-mass

Physics 201: Lecture 15, Pg 24 Sample calculation: l Consider the following mass distribution: (24,0) (0,0) (12,12) m 2m m R CM = (12,6) X CM = (m x 0 + 2m x 12 + m x 24 )/4m meters Y CM = (m x 0 + 2m x 12 + m x 0 )/4m meters X CM = 12 meters Y CM = 6 meters

Physics 201: Lecture 15, Pg 25 A classic example l There is a disc of uniform mass and radius r. However there is a hole of radius a a distance b (along the x-axis) away from the center. l Where is the center of mass for this object?

Physics 201: Lecture 15, Pg 26 System of Particles: Center of Mass l For a continuous solid, convert sums to an integral. y x dm r where dm is an infinitesimal mass element (see text for an example).

Physics 201: Lecture 15, Pg 27 Recap l Thursday, Review for exam l For Tuesday, Read Chapter