L24-s1,8 Physics 114 – Lecture 24 §8.5 Rotational Dynamics Now the physics of rotation Using Newton’s 2 nd Law, with a = r α gives F = m a = m r α τ =

Slides:



Advertisements
Similar presentations
Angular Quantities Correspondence between linear and rotational quantities:
Advertisements

CH 10: Rotation.
Rotational Inertia. Circular Motion  Objects in circular motion have kinetic energy. K = ½ m v 2  The velocity can be converted to angular quantities.
今日課程內容 CH10 轉動 轉動牛頓第二運動定律 轉動動能 轉動慣量 Angular Quantities Here is the correspondence between linear and rotational quantities:
Comparing rotational and linear motion
Dynamics of Rotational Motion
Chapter 9 Rotational Dynamics. 9.5 Rotational Work and Energy.
Rigid body rotations inertia. Constant angular acceleration.
Physics 201: Lecture 18, Pg 1 Lecture 18 Goals: Define and analyze torque Introduce the cross product Relate rotational dynamics to torque Discuss work.
Dynamics of Rotational Motion
Rotational Dynamics Chapter 9.
Chapter 10: Rotation. Rotational Variables Radian Measure Angular Displacement Angular Velocity Angular Acceleration.
Rotational Kinetic Energy Conservation of Angular Momentum Vector Nature of Angular Quantities.
Department of Physics and Applied Physics , F2010, Lecture 20 Physics I LECTURE 20 11/21/10.
Physics 101: Lecture 18, Pg 1 Physics 101: Lecture 18 Rotational Dynamics l Today’s lecture will cover Textbook Sections : è Quick review of last.
Chapter Eight Rotational Dynamics Rotational Dynamics.
Rotational Energy. Rigid Body  Real objects have mass at points other than the center of mass.  Each point in an object can be measured from an origin.
Department of Physics and Applied Physics , F2010, Lecture 19 Physics I LECTURE 19 11/17/10.
D. Roberts PHYS 121 University of Maryland Physic² 121: Phundament°ls of Phy²ics I November 27, 2006.
Phy 201: General Physics I Chapter 9: Rotational Dynamics Lecture Notes.
Physics 106: Mechanics Lecture 02
Chapter 8 Rotational Equilibrium and Rotational Dynamics.
D. Roberts PHYS 121 University of Maryland Physic² 121: Phundament°ls of Phy²ics I November 20, 2006.
Rotational Dynamics. Moment of Inertia The angular acceleration of a rotating rigid body is proportional to the net applied torque:  is inversely proportional.
Rotational Work and Kinetic Energy Dual Credit Physics Montwood High School R. Casao.
Rotational Kinetic Energy. Kinetic Energy The kinetic energy of the center of mass of an object moving through a linear distance is called translational.
Work Let us examine the work done by a torque applied to a system. This is a small amount of the total work done by a torque to move an object a small.
Chap. 11B - Rigid Body Rotation
10/12/2012PHY 113 A Fall Lecture 181 PHY 113 A General Physics I 9-9:50 AM MWF Olin 101 Plan for Lecture 18: Chapter 10 – rotational motion 1.Torque.
Tuesday, Oct. 28, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #18 Tuesday, Oct. 28, 2014 Dr. Jaehoon Yu Torque and Angular.
Lecture Outline Chapter 8 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Rotation Rotational Variables Angular Vectors Linear and Angular Variables Rotational Kinetic Energy Rotational Inertia Parallel Axis Theorem Newton’s.
8.4. Newton’s Second Law for Rotational Motion
Chapter 10 - Rotation Definitions: –Angular Displacement –Angular Speed and Velocity –Angular Acceleration –Relation to linear quantities Rolling Motion.
Example Problem The parallel axis theorem provides a useful way to calculate I about an arbitrary axis. The theorem states that I = Icm + Mh2, where Icm.
Find the moments of inertia about the x & y axes:
Equations for Projectile Motion
Chapter 8 Rotational Motion.
Chapter 10 Chapter 10 Rotational motion Rotational motion Part 2 Part 2.
Chapter 11: Rotational Dynamics  As we did for linear (or translational) motion, we studied kinematics (motion without regard to the cause) and then dynamics.
R OTATIONAL M OTION III Torque, Angular Acceleration and Rotational Energy.
DYNAMICS VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Tenth Edition Ferdinand P. Beer E. Russell Johnston, Jr. Phillip J. Cornwell Lecture Notes: Brian P.
9.4. Newton’s Second Law for Rotational Motion A model airplane on a guideline has a mass m and is flying on a circle of radius r (top view). A net tangential.
Rotational Kinetic Energy An object rotating about some axis with an angular speed, , has rotational kinetic energy even though it may not have.
L21-s1,11 Physics 114 – Lecture 21 §7.6 Inelastic Collisions In inelastic collisions KE is not conserved, which is equivalent to saying that mechanical.
Rotational Dynamics. When you apply a force to a rigid body (i.e. one that maintains its form with no internal disruption) at a distance from an axis,
Moment Of Inertia.
Thursday, Oct. 30, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #19 Thursday, Oct. 30, 2014 Dr. Jaehoon Yu Rolling Kinetic.
1 Rotation of a Rigid Body Readings: Chapter How can we characterize the acceleration during rotation? - translational acceleration and - angular.
1 Work in Rotational Motion Find the work done by a force on the object as it rotates through an infinitesimal distance ds = r d  The radial component.
Chapter 9 Rotational Dynamics
Tuesday, June 26, 2007PHYS , Summer 2006 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #15 Tuesday, June 26, 2007 Dr. Jaehoon Yu Rotational.
Physics 101: Lecture 13, Pg 1 Physics 101: Lecture 13 Rotational Kinetic Energy and Inertia Exam II.
10-5 Rotational Dynamics; Torque and Rotational Inertia
Wednesday, Nov. 10, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Moment of Inertia 2.Parallel Axis Theorem 3.Torque and Angular Acceleration 4.Rotational.
Angular Displacement, Velocity, and Acceleration Rotational Energy Moment of Inertia Torque Work, Power and Energy in Rotational Motion.
Translational-Rotational Analogues & Connections Continue! Translation Rotation Displacementx θ Velocityvω Accelerationaα Force (Torque)Fτ Massm? CONNECTIONS.
Short Version : 10. Rotational Motion Angular Velocity & Acceleration (Instantaneous) angular velocity Average angular velocity  = angular displacement.
-Angular and Linear Quantities -Rotational Kinetic Energy -Moment of Inertia AP Physics C Mrs. Coyle.
Chapter 10 Lecture 18: Rotation of a Rigid Object about a Fixed Axis: II.
Chapter 8 Rotational Motion and Equilibrium. Units of Chapter 8 Rigid Bodies, Translations, and Rotations Torque, Equilibrium, and Stability Rotational.
Rotational Dynamics The Action of Forces and Torques on Rigid Objects
Rotational Dynamics.
Dynamics of a System of Particles Prof. Claude A Pruneau Notes compiled by L. Tarini Physics and Astronomy Department Wayne State University PHY 6200 Theoretical.
Rotational Dynamics Chapter 9.
Chapter 10: Rotational Motional About a Fixed Axis
Rotational Dynamics Continued
Section 10.8: Energy in Rotational Motion
Lecture 17 Goals: Chapter 12
Rotational Dynamics.
Presentation transcript:

L24-s1,8 Physics 114 – Lecture 24 §8.5 Rotational Dynamics Now the physics of rotation Using Newton’s 2 nd Law, with a = r α gives F = m a = m r α τ = r F sin θ = r ┴ F = r F ┴ gives with θ = 90 0 or with r ┴ = r, τ = m r 2 α m F r

L24-s2,8 Physics 114 – Lecture 24 Generalizing this result to a rigid body with point masses, m 1, m 2, m 3, …, at distances from the axis of rotation of, r 1, r 2, r 3, …, gives τ 1 = m 1 r 1 2 α 1, etc., A rigid body rotates such that ω 1 = ω 2 = ω 3 = … = ω and likewise α 1 = α 2 = α 3 = … = α Summing, τ net = Σ τ i = Σ (m i r i 2 α i ) = Σ (m i r i 2 ) α, where we have used α 1 = α 2 = α 3 = … = α

L24-s3,8 Physics 114 – Lecture 22 We define the moment of inertia of a body about a particular axis to be, I = Σ (m i r i 2 ) = m 1 r m 2 r m 3 r … Finally, τ net = I α Examples: Wheel of radius,r, – all the mass on the rim: I = mr 2 Cylinder or disc of radius, r, about its axis: I =½mr 2 Sphere of radius, r, about an axis through its center: I =(2/5)mr 2

L24-s4,8 Physics 114 – Lecture 24 §8.6 Solving Problems in Rotational Dynamics Study box, Problem Solving – Rotational Motion on p 209 Lets look at some examples

L24-s5,8 Physics 114 – Lecture 24 §8.7 Rotational Kinetic Energy Consider in a rigid body of finite size a particle of mass, m i, located at a perpendicular distance, r i, from the axis of rotation, with this body rotating about this axis with an angular velocity, ω Its linear velocity, v i, which is in the tangential direction, is then v i = r i ω and its kinetic energy of rotation, KE rot, is KE rot = ½ m i v i 2 = ½ m i (r i ω) 2 = ½ (m i r i 2 ) ω 2

L24-s6,8 Physics 114 – Lecture 24 Summing for all particles in the body, we obtain, KE rot = Σ ½ (m i r i 2 ) ω 2 = ½ (Σ m i r i 2 ) ω 2, since ω = const Using the definition, moment of inertia, I = Σ (m i r i 2 ), this becomes, KE rot = ½ I ω 2 For rolling motion, KE total = KE translational + KE rotational Giving, KE tot = ½ m v 2 + ½ I ω 2

L24-s7,8 Physics 114 – Lecture 24 For a body rolling down an incline, where the work done by the non-conservative forces, W NC, is 0 and where I ≡ I CM, since CM moves with velocity v = rω E = KE tot + PE = ½ m v 2 + ½ I ω 2 + mgh = constant This quantity is conserved just as we had earlier that the quantity, in the absence of rotational motion, E = KE tot + PE = ½ m v 2 + mgh = constant Lets see some examples: Wheel → KE tot = ½ m v 2 + ½ I ω 2 = ½ m v 2 + ½ mr 2 ω 2 = ½ m v 2 + ½ m(r ω) 2 = ½ m v 2 + ½ m v 2 = m v 2

L24-s8,8 Physics 114 – Lecture 24 Disc or cylinder → KE tot = ½ m v 2 + ½ I ω 2 = ½ m v 2 + ½(½ mr 2 ) ω 2 = ½ m v 2 + ¼ m(r ω) 2 = ½ m v 2 + ¼ m v 2 = ¾ m v 2 = 0.75 m v 2 Sphere → KE tot = ½ m v 2 + ½ I ω 2 = ½ m v 2 + ½(( 2/5) mr 2 ) ω 2 = ½ m v 2 + ( 1/5) m(r ω) 2 = ½ m v 2 + ( 1/5) m v 2 = ( 7/10) m v 2 = 0.7 m v 2 After starting from rest, at the same level on an incline, which will reach the foot of an incline first? A wheel, a cylinder or a sphere? Examples