Human Genome Project.

Slides:



Advertisements
Similar presentations
Recombinant DNA Technology
Advertisements

Human Genome Project What did they do? Why did they do it? What will it mean for humankind? Animation OverviewAnimation Overview - Click.
9 Genomics and Beyond Brief Chapter Outline
Recombinant DNA Introduction to Recombinant DNA technology
The Human Genome Project (Lecture 7)
Goals of the Human Genome Project determine the entire sequence of human DNA identify all the genes in human DNA store this information in databases improve.
Genome Analysis Determine locus & sequence of all the organism’s genes More than 100 genomes have been analysed including humans in the Human Genome Project.
Manipulating the Genome: DNA Cloning and Analysis 20.1 – 20.3 Lesson 4.8.
Genetic technology Unit 4 Chapter 13.
Reading the Blueprint of Life
DNA Technology and Genomics
Genetics and Biotechnology
Objective 2: TSWBAT describe the basic process of genetic engineering and the applications of it.
Presentation on genome sequencing. Genome: the complete set of gene of an organism Genome annotation: the process by which the genes, control sequences.
Chapter 20~DNA Technology & Genomics. Who am I? Recombinant DNA n Def: DNA in which genes from 2 different sources are linked n Genetic engineering:
HAPLOID GENOME SIZES (DNA PER HAPLOID CELL) Size rangeExample speciesEx. Size BACTERIA1-10 Mb E. coli: Mb FUNGI10-40 Mb S. cerevisiae 13 Mb INSECTS.
AP Biology Ch. 20 Biotechnology.
Trends in Biotechnology
歐亞書局 PRINCIPLES OF BIOCHEMISTRY Chapter 9 DNA-Based Information Technologies.
Human Genome Project by: Amanda Mosello. What is the Human Genome Project? created in 1990, by the National Institutes of Health and the US Department.
1 Genetics Faculty of Agriculture Instructor: Dr. Jihad Abdallah Topic 13:Recombinant DNA Technology.
DNA Technology Chapter 20.
Lesson Overview Lesson Overview Studying the Human Genome Lesson Overview 14.3 Studying the Human Genome.
Genomics BIT 220 Chapter 21.
Applications of DNA technology
Manipulating DNA.
DNA Technology.
Section 2 Genetics and Biotechnology DNA Technology
13-1 Changing the Living World
NIS - BIOLOGY Lecture 57 – Lecture 58 DNA Technology Ozgur Unal 1.
DNA Technology. Overview DNA technology makes it possible to clone genes for basic research and commercial applications DNA technology is a powerful set.
19.1 Techniques of Molecular Genetics Have Revolutionized Biology
 The process by which desired traits of certain plants and animals are selected and passed on to their future generations is called selective breeding.
DNA TECHNOLOGY AND GENOMICS CHAPTER 20 P
Studijní obor Bioinformatika. LAST LECTURE SUMMARY.
Biotechnology. Polymerase Chain Reaction PCR is the cloning of DNA (amplification). Copies are made and the amount of DNA can be rapidly increased. Useful.
By Melissa Rivera.  GENE CLONING: production of multiple identical copies of DNA  It was developed so scientists could work directly with specific genes.
Chapter 5 The Content of the Genome 5.1 Introduction genome – The complete set of sequences in the genetic material of an organism. –It includes the.
Researchers use genetic engineering to manipulate DNA. Section 2: DNA Technology K What I Know W What I Want to Find Out L What I Learned.
GENE SEQUENCING. INTRODUCTION CELL The cells contain the nucleus. The chromosomes are present within the nucleus.
KEY CONCEPT Biotechnology relies on cutting DNA at specific places.
Chapter 10: Genetic Engineering- A Revolution in Molecular Biology.
Manipulating DNA. Scientists use their knowledge of the structure of DNA and its chemical properties to study and change DNA molecules Different techniques.
Johnson - The Living World: 3rd Ed. - All Rights Reserved - McGraw Hill Companies Genomics Chapter 10 Copyright © McGraw-Hill Companies Permission required.
Genomics Part 1. Human Genome Project  G oal is to identify the DNA sequence of every gene in humans Genome  all the DNA in one cell of an organism.
Genetic Engineering/ Recombinant DNA Technology
DNA Technology Ch. 20. The Human Genome The human genome has over 3 billion base pairs 97% does not code for proteins Called “Junk DNA” or “Noncoding.
Chapter 12 Assessment How could manipulating DNA be beneficial?
Chapter 20 DNA Technology and Genomics. Biotechnology is the manipulation of organisms or their components to make useful products. Recombinant DNA is.
Trends in Biotechnology
Gene Technologies and Human ApplicationsSection 3 Section 3: Gene Technologies in Detail Preview Bellringer Key Ideas Basic Tools for Genetic Manipulation.
RECOMBINANT DNA DNA THAT CONTAINS DNA SEGMENTS OR GENES FROM DIFFERENT SOURCES. DNA TRANSFERRED FROM ONE PART OF A DNA MOLECULE TO ANOTHER, FROM ONE CHROMOSOME.
Click on a lesson name to select. Objectives 1.Describe how selective breeding is used to produce organisms with desired traits. 2.Compare inbreeding.
DNA Technology & Genomics CHAPTER 20. Restriction Enzymes enzymes that cut DNA at specific locations (restriction sites) yielding restriction fragments.
Title: Studying whole genomes Homework: learning package 14 for Thursday 21 June 2016.
Studying and Manipulating Genomes
Biotechnology.
13.1 Applied Genetics Selective Breeding
Genomics: Sequencing Is the Basis for Identifying and Mapping All Genes in a Genome Genomics, the study of genomes, encompasses structural genomics, functional.
Try not to leave any behind – I dare you!
Cloning Overview DNA can be cloned into bacterial plasmids for research or commercial applications. The recombinant plasmids can be used as a source of.
Section 2 Genetics and Biotechnology DNA Technology
DNA Technology Now it gets real…..
Chapter 20 – DNA Technology and Genomics
Manipulating DNA Chapter 9
Bellwork: What is the human genome project. What was its purpose
Chapter 14 Bioinformatics—the study of a genome
Genomes and Their Evolution
Introduction to Sequencing
A Lot More Advanced Biotechnology Tools
Presentation transcript:

Human Genome Project

History 1985. Proposed. 1988. Initiated and funded by NIH and US Dept. of Energy ($3 billion set aside) 1990. Work begins. 1998. Celera announces a 3-year plan to complete the project early Published in Science and Nature in February, 2001 The quest for genome sequencing was being pursued simultaneously in over 20 laboratories in six countries

Goals A primary goal of the Human Genome Project is to make a series of descriptive diagrams—maps—of each human chromosome at increasingly finer resolutions. After mapping is completed, the next step is to determine the base sequence of each of the ordered DNA fragments. The ultimate goal of genome research is to find all the genes in the DNA sequence and to develop tools for using this information in the study of human biology and medicine.

Goals Create physical map of the 24 human chromosomes (22 autosomes, X & Y) Identify the entire set of genes & map them all to their chromosomes Determine the nucleotide sequence of the estimated 3 billion base pairs Analyze genetic variation among humans Map and sequence the genomes of model organisms

Goals

Model organisms Bacteria (E. coli, influenza, several others) Yeast (Saccharomyces cerevisiae) Plant (Arabidopsis thaliana) Roundworm (Caenorhabditis elegans) Fruit fly (Drosophila melanogaster) Mouse (Mus musculus)

How they did it… DNA from 5 humans 2 males, 3 females Cut up DNA with restriction enzymes Ligated into BACs & YACs, then grew them up Sequenced the BACs Let a supercomputer put the pieces together

Cut segments inserted into BACs DNA Cut segments inserted into BACs Lots of overlap Known sequence

Sequencing Technologies Sequencing procedures currently involve first subcloning DNA fragments from a cosmid or bacteriophage library into special sequencing vectors that carry shorter pieces of the original cosmid fragments. The next step is to make the subcloned fragments into sets of nested fragments differing in length by one nucleotide, so that the specific base at the end of each successive fragment is detectable after the fragments have been separated by gel electrophoresis.

Sequencing Technologies The two basic sequencing approaches, Maxam-Gilbert and Sanger, differ primarily in the way the nested DNA fragments are produced. Maxam-Gilbert sequencing (also called the chemical degradation method) uses chemicalsto cleave DNA at specific bases, resulting in fragments of different lengths. A refinement to the Maxam-Gilbert method known as multiplex sequencing enables investigators to analyze about 40 clones on a single DNA sequencing gel. Sanger sequencing (also called the chain termination or dideoxy method) involves using an enzymatic procedure to synthesize DNA chains of varying length in four different reactions, stopping the DNA replication at positions occupied by one of the four bases, and then determining the resulting fragment lengths.

Sequencing Technologies Meeting Human Genome Project sequencing goals by 2003 has required continual improvements in sequencing speed, reliability, and costs. Previously, standard methods were based on separating DNA fragments by gel electrophoresis, which was extremely labor intensive and expensive. Total sequencing output in the community was about 200 Mb for 1998. In January 2003, the DOE Joint Genome Institute alone sequenced 1.5 billion bases for the month. Gel-based sequencers use multiple tiny (capillary) tubes to run standard electrophoretic separations. These separations are much faster because the tubes dissipate heat well and allow the use of much higher electric fields to complete sequencing in shorter times.

How the Code was Decoded DoubleTwist Inc, an application service provider (ASP), devoted to empower life scientists, completed the first annotation of the human genome. The DoubleTwist human genome database was created using Sun Enterprise 420R and 10 K supercomputers, that is, a total of more than 350 processors. It brought to a close an extensive analysis of the available HGP data that revealed genes and other valuable information. The task was accomplished using Sun Enterprise supercomputers, including Starfire servers.

Genome Map A genome map describes the order of genes or other markers and the spacing between them on each chromosome. Human genome maps are constructed on several different scales or levels of resolution. At the coarsest resolution are genetic linkage maps, which depict the relative chromosomal locations of DNA markers (genes and other identifiable DNA sequences) by their patterns of inheritance. Physical maps describe the chemical characteristics of the DNA molecule itself.

Genetic Map Genetic linkage maps of each chromosome are made by determining how frequently two markers are passed together from parent to child. Because genetic material is sometimes exchanged during the production of sperm and egg cells, groups of traits (or markers) originally together on one chromosome may not be inherited together.

Genetic Map The value of the genetic map is that an inherited disease can be located on the map by following the inheritance of a DNA marker present in affected individuals (but absent in unaffected individuals), even though the molecular basis of the disease may not yet be understood nor the responsible gene identified.

Physical Maps Different types of physical maps vary in their degree of resolution. The lowest-resolution physical map is the chromosomal (sometimes called cytogenetic) map, which is based on the distinctive banding patterns observed by light microscopy of stained chromosomes. A cDNA map shows the locations of expressed DNA regions (exons) on the chromosomal map. The more detailed cosmid contig map depicts the order of overlapping DNA fragments spanning the genome. A macrorestriction map describes the order and distance between enzyme cutting (cleavage) sites. The highest-resolution physical map is the complete elucidation of the DNA base-pair sequence of each chromosome in the human genome. Physical maps are described in greater detail below.

Restriction Enzymes: Microscopic Scalpels Isolated from various bacteria, restriction enzymes recognize short DNA sequences and cut the DNA molecules at those specific sites. (A natural biological function of these enzymes is to protect bacteria by attacking viral and other foreign DNA.) Some restriction enzymes (rare-cutters) cut the DNA very infrequently, generating a small number of very large fragments (several thousand to a million bp). Most enzymes cut DNA more frequently, thus generating a large number of small fragments (less than a hundred to more than a thousand bp). On average, restriction enzymes with • 4-base recognition sites will yield pieces 256 bases long, • 6-base recognition sites will yield pieces 4000 bases long, and • 8-base recognition sites will yield pieces 64,000 bases long. Since hundreds of different restriction enzymes have been characterized, DNA canbe cut into many different small fragments.

High-Resolution Physical Mapping The two current approaches to high-resolution physical mapping are termed “top-down” (producing a macrorestriction map) and “bottom-up” (resulting in a contig map). With either strategy (described below) the maps represent ordered sets of DNA fragments that are generated by cutting genomic DNA with restriction enzymes. The fragments are then amplified by cloning or by polymerase chain reaction (PCR) methods (see DNA Amplification). Electrophoretic techniques are used to separate the fragments according to size into different bands, which can be visualized by direct DNA staining or by hybridization with DNA probes of interest. The use of purified chromosomes separated either by flow sorting from human cell lines or in hybrid cell lines allows a single chromosome to be mapped

Human genome content 1-2 % codes for protein products 24% important for translation 75% “junk” Repetitive elements Satellites (regular, mini-, micro-) Transposons Retrotransposons Parasites

There's a Trap, too There is concern about the use of genetic information to discriminate against people of a particular race, who are more vulnerable to contracting certain diseases. It may be used for motives, which can be described as "suspect". It can be, for example, used for slowing the process of ageing or for endowing children with capacities, which today are considered "inhuman". But then, for instance, the nuclear power always had two faces.

References [1]http://marcus.whitman.edu/~hutchidw/Human%20Genome%20Project.ppt [2]http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml [3]http://www.india -today.com/ctoday/20000716/trends.html