Institut Theorie Elektromagnetischer Felder Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8, 64289.

Slides:



Advertisements
Similar presentations
RF-Gun beam based alignment at PITZ/FLASH
Advertisements

S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super.
Impedance Budget from LINAC to SASE2 Igor Zagorodnov Beam Dynamics Group Meeting
CALCULATIONS OF THE LCLS INJECTOR USING ASTRA Jean-Paul Carneiro DESY Hamburg ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations.
The Compendium of formulae of kick factor. PLACET - ESA collimation simulation. Adina Toader School of Physics and Astronomy, University of Manchester.
Helical Cooling Channel Simulation with ICOOL and G4BL K. Yonehara Muon collider meeting, Miami Dec. 13, 2004 Slide 1.
Chapter 11 Rüdiger Schmidt (CERN) – Darmstadt TU –Version E2.2 RF cavities for particle accelerators.
F Specifications for the dark current kicker for the NML test facility at Fermilab S. Nagaitsev, M. Church, P. Piot, C.Y. Tan, J. Steimel Fermilab May.
CSR calculation in ERL merger section Tsukasa Miyajima KEK, High Energy Accelerator Research Organization 8 November, 2010, 13:30 Mini Workshop on CSR.
Particle Studio simulations of the resistive wall impedance of copper cylindrical and rectangular beam pipes C. Zannini E. Metral, G. Rumolo, B. Salvant.
Results from measurement and simulation methods (LW, PIC, Astra) and setup About LW & Astra Simulations of The Pitz Gun comparison LW  Astra more analysis.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, N.Kazarinov.
Influence of the Third Harmonic Module on the Beam Size Maria Kuhn University of Hamburg Bachelor Thesis Presentation.
Photocathode 1.5 (1, 3.5) cell superconducting RF gun with electric and magnetic RF focusing Transversal normalized rms emittance (no thermal emittance)
Low Emittance RF Gun Developments for PAL-XFEL
IRPSS: A Green’s Function Approach to Modeling Photoinjectors Mark Hess Indiana University Cyclotron Facility & Physics Department *Supported by NSF and.
Recent Experiments at PITZ ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations of X-RAY FELs August 18-22, 2003 at DESY-Zeuthen,
1.Institute For Research in Fundamental Science (IPM), Tehran, Iran 2.CERN, Geneva, Switzerland Mohsen Dayyani Kelisani Thermionic & RF Gun Simulations.
Wakefields in XFEL undulator intersections Igor Zagorodnov Beam Dynamics Group Meeting
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
Calculations of wakefields for the LHCb VeLo. Olga Zagorodnova Desy Hamburg April 8,
CLARA Gun Cavity Optimisation NVEC 05/06/2014 P. Goudket G. Burt, L. Cowie, J. McKenzie, B. Militsyn.
Optics considerations for ERL test facilities Bruno Muratori ASTeC Daresbury Laboratory (M. Bowler, C. Gerth, F. Hannon, H. Owen, B. Shepherd, S. Smith,
2.1 GHz Warm RF Cavity for LEReC Binping Xiao Collider-Accelerator Department, BNL June 15, 2015 LEReC Warm Cavity Review Meeting  June 15, 2015.
Scaling Law of Coherent Synchrotron Radiation in a Rectangular Chamber Yunhai Cai FEL & Beam Physics Department SLAC National Accelerator Laboratory TWIICE.
Collimator wakefields - G.Kurevlev Manchester 1 Collimator wake-fields Wake fields in collimators General information Types of wake potentials.
Beam breakup and emittance growth in CLIC drive beam TW buncher Hamed Shaker School of Particles and Accelerators, IPM.
Outline: Motivation Comparisons with: > Thick wall formula > CST Thin inserts models Tests on the Mode Matching Method Webmeeting N.Biancacci,
Collimation for the Linear Collider, Daresbury.1 Adam Mercer, German Kurevlev, Roger Barlow Simulation of Halo Collimation in BDS.
DEVELOPMENT OF A STEADY STATE SIMULATION CODE FOR KLYSTRONS
Example: Longitudinal single bunch effects Synchrotron tune spread Synchrotron phase shift Potential well distortion Energy spread widening (microwave.
Impedance Budget Database Olga Zagorodnova BD meeting, DESY.
Coupler Short-Range Wakefield Kicks Karl Bane and Igor Zagorodnov Wake Fest 07, 11 December 2007 Thanks to M. Dohlus; and to Z. Li, and other participants.
Long Range Wake Potential of BPM in Undulator Section Igor Zagorodnov and Martin Dohlus Beam Dynamics Group Meeting
D. Lipka, V. Vogel, DESY Hamburg, Germany, Oct Optimization cathode design with gun5 D. Lipka, V. Vogel, DESY Hamburg, Germany.
P I T Z Photo Injector Test Facility Zeuthen Design consideration of the RF deflector to optimize the photo injector at PITZ S.Korepanov.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
BEAMLINE HOM ABSORBER O. Nezhevenko, S. Nagaitsev, N. Solyak, V. Yakovlev Fermi National Laboratory December 11, 2007 Wake Fest 07 - ILC wakefield workshop.
Main activities and news from the Impedance working group.
Round-to-Flat Beam Transformation and Applications Yine Sun Accelerator System Division Advanced Photon Source Argonne Nation Lab. International Workshop.
Collimator Wakefields Igor Zagorodnov BDGM, DESY
TESLA DAMPING RING RF DEFLECTORS DESIGN F.Marcellini & D. Alesini.
S. Bettoni, R. Corsini, A. Vivoli (CERN) CLIC drive beam injector design.
Nufact02, London, July 1-6, 2002K.Hanke Muon Phase Rotation and Cooling: Simulation Work at CERN new 88 MHz front-end update on cooling experiment simulations.
Round-to-Flat Beam Transformation and Applications
6 July 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Sabrina Appel | 1 Micro bunch evolution and „turbulent beams“
HG 2016 Workshop Design of Metallic Subwavelength Structures for Wakefield Acceleration Xueying Lu, Michael Shapiro, Richard Temkin Plasma Science and.
Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8, Darmstadt, Germany - URL: Technische.
Geometric Impedance of LHC Collimators O. Frasciello, S. Tomassini, M. Zobov LNF-INFN Frascati, Italy With contributions and help of N.Mounet (CERN), A.Grudiev.
Preservation of Magnetized Beam Quality in a Non-Isochronous Bend
S.M. Polozov & Ko., NRNU MEPhI
Beam dynamics simulation with 3D Field map for FCC RF gun
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
Panel Discussion 3: Impedance Codes
Preliminary results for electron lens with beam current of 20 A
Sara Thorin, MAX IV Laboratory
T. Agoh (KEK) Introduction CSR emitted in wiggler
For Discussion Possible Beam Dynamics Issues in ILC downstream of Damping Ring LCWS2015 K. Kubo.
Finemet cavity impedance studies
BUNCH LENGTH MEASUREMENT SYSTEM FOR 500 KV PHOTOCATHODE DC GUN AT IHEP
Igor Zagorodnov and Martin Dohlus
Needle Cathodes for RF Guns
Injector: What is needed to improve the beam quality?
Collimator Wakefields
Selected simulations for XFEL photo injector
Physics Design on Injector I
XFEL Beam Dynamics Activity at CANDLE
Minimized emittance for high charge with multi cell superconducting guns and solenoidal focusing D. Lipka, BESSY.
Injector for the Electron Cooler
Igor Zagorodnov and Martin Dohlus
Presentation transcript:

Institut Theorie Elektromagnetischer Felder Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8, Darmstadt, Germany Lab Report TEMF, TU Darmstadt W. Ackermann, R. Cee, R. Hampel, W.F.O. Müller, S. Setzer, T. Weiland, I. Zagorodnov TESLA Collaboration Meeting INFN, Frascati, 05/26/03

1 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Outline  RF Design of a Booster for PITZ (R. Cee)  Dark Current Simulations for the PITZ-RF-Gun (W. Ackermann, S. Setzer)  Wake Fields in Long Structures e.g. Collimators (I. Zagorodnov)

2 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03  /2-accelerating mode  /2-coupling mode Booster Geometry coupling window 2 cells coupling cell (cc) nose cone (drift tube) y z 2 cells P P Biperiodic Structure operated in the  /2-mode accelerating cell (ac)

3 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03  /2-Modes Tuning Procedure accelerating cell tuning E E r ac = mm  am = GHz coupling cell tuning MM r cc = mm  cm = GHz end cell tuning E r ec = mm  am = GHz

4 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Tuned Cavity with Nine Cells am = GHz EzEz ac = GHz; k 2 ac = -0.1% cc = GHz; k 2 cc = -0.6% k 1 = -10.1%; Dispersion CurveField on Axis z

5 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Final Layout Design parameters: r acell mm r irisin 12.0 mm r irisout 28.0 mm r ccell mm r endcell mm l hccell 3.0 mm l win 14.0 mm l hacell mm r winin 35.0 mm r winout r ccell a win 40.0° Geometry: r irisin r ccell r irisout l nose l win l hccell l hacell r acell quality factor Q22,470 eff. shunt imp. R s 24.2 M  /m R s /Q 1.1 k  /m field flatness2.1 % Electrical properties: y x y z a win r winin r winout

6 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Beam Dynamics Simulation (ASTRA) booster Transverse Emittance and Beam Width Energy max. |E z |-field in gun50.0 MV/m max. |B z |-field in gun200.0 mT max. |E z |-field in booster30.0 MV/m booster z-position1.9 m Field parameters: # of macro particles1000 bunch charge-1.0 nC plateau length / rise time20.0 ps / 2.0 ps rms-bunch width (uniform)0.75 mm Beam parameters:

7 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Outline  RF Design of a Booster for PITZ (R. Cee)  Dark Current Simulations for the PITZ-RF-Gun (W. Ackermann, S. Setzer)  Wake Fields in Long Structures e.g. Collimators (I. Zagorodnov)

8 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Potential dark current emitting areas MWS model of the RF-Gun Fowler-Nordheim equation Accelerating FieldSolenoid Field PITZ RF Gun

9 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Equation of motion Integration in time Implicit approximation Used Leap-Frog Tracking Algorithmus

10 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Trajectories of electrons starting at the iris (E = 40 MV/m, I sol = 100 A) Start from Iris

11 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Trajectories of electrons starting at the cathode (E = 40 MV/m, different launching phases) Start from Kathod

12 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Dark current vs. Solenoid current (E = 40 MV/m) Measurement vs. Simulation

13 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Dark Current vs. El. Field Strength (Different solenoid currents) Fowler-Nordheim

14 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Outline  RF Design of a Booster for PITZ (R. Cee)  Dark Current Simulations for the PITZ-RF-Gun (W. Ackermann, S. Setzer)  Wake Fields in Long Structures e.g. Collimators (I. Zagorodnov)

15 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Short bunches in long structures new code (ECHO) zero dispersion in longitudinal direction. staircase free (second order convergent) moving mesh easily (mesh step = time step) longitudinal + transversal Motivation

16 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Transverse wake function cavities + 9 belows =12m12m 3 cryomodules = 36 meters Cryomodule 1 Cryomodule 2 Cryomodule 3 Transverse wakes for short bunches up to have been studied. To reach steady state solution the structure from 3 cryomodules is considered. For longitudinal case the wakes were studied earlier by Novokhatski-Timm- Weiland *. The transverse results are new **. ** Weiland T., Zagorodnov I, The Short-Range Transverse Wake Function for TESLA Accelerating Structure, DESY, TESLA , 2003 * Novokhatski A, Timm M, Weiland T. Single Bunch Energy Spread in the TESLA Cryomodule, DESY, TESLA , 1999

17 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Transverse wake function The wake functions at short distance are approximately related by (1) (2) a – iris rtadius, g – cavity gap One-cell structure Periodic structure - fit parameters – relations (1), (2) hold exactly – only relation (2) holds exactly K.L.F.Bane, SLAC-PUB-9663, LCC-0116, 2003 Different behavior!

18 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Single-Cell Structure Middle cell with pipe radius - cell period in the TESLA cavity Wake functions obtained from the fit of numerical data to analytical formulas Comparison of numerical (points) and analytical (lines) integral parameters for the TESLA single-cell structure.

19 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Periodic Structure Structure of 144 cells cells are required to reach steady state solution Comparison of numerical (pionts) and analytical (lines) integral parameters for the periodic structure Fit parameters

20 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 TESLA Structure Comparison of numerical (points) and analytical (lines) integral parameters for the third cryomodule Like periodic structure!

21 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 TESLA Structure Comparison of numerical (grays) and analytical (dashes) transverse wakes Comparison of numerical (grays) and analytical (dashes) longitudinal wakes for the third cryomodule

22 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 TESLA Structure Kick factor/V/pC/m Numeri -cal Analyti- cal TDR Loss factor/V/pC Numeri- cal Analyti- cal TDR Comparison of numerical and analytical loss factors for the third cryomodule TDR formula for transversal wake shows one cell behavior and overestimates the kick Comparison of numerical and analytical kick factors for the third cryomodule Correct! Overestimates!

23 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Collimators Longitudinal wake dependence on the collimator angle

24 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Collimators Transverse wake dependence on the collimator angle Zagorodnov I.,Weiland T., Bane K., Numerical Calculation of Small-Angle Collimator Wakefields for Short Bunches, DESY, TESLA , 2003 The numerical results and analytical estimations of K. Yokoya confirm each other up to extremely small angles and short bunches. K. Yokoya, Impedance of Slowly Tapered Structures, Tech. Rep. SL/90-88 (AP), CERN, 1990.

25 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Comparison with experiment sigma, mm Kick factors, V/pC/mm MeasuredSimulatedAnalytical  mrad 19mm 51mm 1.9mm Geometry of experiment collimator at SLAC (the real device has a square form) Coincide! Differ?!

26 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03 Collimator Form Optimization Collimator geometry optimization. Optimum d ~ 4.5mm Geometry of the “step+taper” collimator Work together with M.Dohlus and M. Koerfer (DESY)

27 TEMF, TU Darmstadt TESLA Meeting, INFN, Frascati, 05/26/03