1 A VIEW ON THE MATTER POWER AT MEDIUM SCALES MATTEO VIEL INAF and INFN Trieste COSMOCOMP Trieste – 7 th September 2012.

Slides:



Advertisements
Similar presentations
Building a Mock Universe Cosmological nbody dark matter simulations + Galaxy surveys (SDSS, UKIDSS, 2dF) Access to mock catalogues through VO Provide analysis.
Advertisements

Weighing Neutrinos including the Largest Photometric Galaxy Survey: MegaZ DR7 Moriond 2010Shaun Thomas: UCL “A combined constraint on the Neutrinos” Arxiv:
1 Cosmological Constraints on Active and Sterile Neutrinos Matteo Viel INAF/OATS & INFN/TS From Majorana to LHC: Workshop on the Origin of Neutrino Mass.
Simulating the joint evolution of quasars, galaxies and their large-scale distribution Springel et al., 2005 Presented by Eve LoCastro October 1, 2009.
NEUTRINO PHYSICS FROM PRECISION COSMOLOGY STEEN HANNESTAD 17 AUGUST 2010 – UNIVERSENET, COPENHAGEN e    
Efectos de las oscilaciones de sabor sobre el desacoplamiento de neutrinos c ó smicos Teguayco Pinto Cejas AHEP - IFIC Teguayco Pinto Cejas
Non-linear matter power spectrum to 1% accuracy between dynamical dark energy models Matt Francis University of Sydney Geraint Lewis (University of Sydney)
Christian Wagner - September Potsdam Nonlinear Power Spectrum Emulator Christian Wagner in collaboration with Katrin Heitmann, Salman Habib,
Theoretical work on Cosmology and Structure Formation Massimo Ricotti.
Å rhus, 4 September 2007 Julien Lesgourgues (LAPTH, Annecy, France)
In The Beginning  N-body simulations (~100s particles) – to study Cluster formation  Cold collapse produces too steep a density profile (Peebles 1970)
Particle Physics and Cosmology Dark Matter. What is our universe made of ? quintessence ! fire, air, water, soil !
COSMOLOGICAL SPECTROSCOPY OF THE HIGH REDSHIFT UNIVERSE: STATUS & PERSPECTIVES MATTEO VIEL INAF & INFN – Trieste HEIDELBERG JOINT ASTRONOMICAL COLLOQUIUM.
Probing dark matter clustering using the Lyman-  forest Pat McDonald (CITA) COSMO06, Sep. 28, 2006.
Physics 133: Extragalactic Astronomy and Cosmology Lecture 11; February
Lens Galaxy Environments Neal Dalal (IAS), Casey R. Watson (Ohio State) astro-ph/ Who cares? 2.What to do 3.Results 4.Problems! 5.The future.
THE STRUCTURE OF COLD DARK MATTER HALOS J. Navarro, C. Frenk, S. White 2097 citations to NFW paper to date.
MATTEO VIEL THE LYMAN-  FOREST: A UNIQUE TOOL FOR COSMOLOGY Bernard’s cosmic stories – Valencia, 26 June 2006 Trieste Dark matter Gas.
Cosmological structure formation: models confront observations Andrea V. Maccio’ Max Planck Institute for Astronomy Heidelberg A. Boyarsky (EPFL),A. Dutton.
NEUTRINO PHYSICS AND COSMOLOGY STEEN HANNESTAD, Aarhus University BLOIS, 31 MAY 2012 e    
Signe Riemer-Sørensen, University of Queensland In collaboration with C. Blake (Swinburne), D. Parkinson (UQ), T. Davis (UQ) and the WiggleZ collaboration.
NEUTRINO MASS FROM LARGE SCALE STRUCTURE STEEN HANNESTAD CERN, 8 December 2008 e    
NEUTRINO PHYSICS FROM COSMOLOGY EVIDENCE FOR NEW PHYSICS? STEEN HANNESTAD, Aarhus University NuHorizons 2011 e    
Impact of Early Dark Energy on non-linear structure formation Margherita Grossi MPA, Garching Volker Springel Advisor : Volker Springel 3rd Biennial Leopoldina.
Different physical properties contribute to the density and temperature perturbation growth. In addition to the mutual gravity of the dark matter and baryons,
MATTEO VIEL STRUCTURE FORMATION INAF and INFN Trieste SISSA - 28, th February/ 3 rd March 2011.
Neutrinos and the large scale structure
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
January 25, 2006 NCW, Nice 1 1 Caustics in Dark Matter Halos Sergei Shandarin, University of Kansas (collaboration with Roya Mohayaee, IAP) Nonlinear Cosmology.
Cosmological studies with Weak Lensing Peak statistics Zuhui Fan Dept. of Astronomy, Peking University.
NEUTRINO COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS LAUNCH WORKSHOP, 21 MARCH 2007 e    
Cosmological Particle Physics Tamara Davis University of Queensland With Signe Riemer-Sørensen, David Parkinson, Chris Blake, and the WiggleZ team.
MATTEO VIEL THE LYMAN-  FOREST AS A COSMOLOGICAL PROBE Contents and structures of the Universe – La Thuile (ITALY), 19 March 2006.
Testing a Dark Sector Interaction with GMT Jounghun Lee (Seoul National University)
Using Baryon Acoustic Oscillations to test Dark Energy Will Percival The University of Portsmouth (including work as part of 2dFGRS and SDSS collaborations)
Modeling the dependence of galaxy clustering on stellar mass and SEDs Lan Wang Collaborators: Guinevere Kauffmann (MPA) Cheng Li (MPA/SHAO, USTC) Gabriella.
Disentangling dynamic and geometric distortions Federico Marulli Dipartimento di Astronomia, Università di Bologna Marulli, Bianchi, Branchini, Guzzo,
Simulations by Ben Moore (Univ. of Zurich)
THE LYMAN-  FOREST AS A PROBE OF FUNDAMENTAL PHYSICS MATTEO VIEL Shanghai, 16 March Cosmological significance of the Lyman-  forest 2. LUQAS:
Lyman-  quasar spectra as cosmological probes MATTEO VIEL INAF & INFN – Trieste.
Latest Results from LSS & BAO Observations Will Percival University of Portsmouth StSci Spring Symposium: A Decade of Dark Energy, May 7 th 2008.
1 Astroparticle Physics in Intergalactic Space Matteo Viel – INAF Trieste APP14 – Amsterdam, 24 th June 2014.
Cosmological aspects of neutrinos (III) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
Energy Balance in Clusters of Galaxies Patrick M. Motl & Jack O. Burns Center for Astrophysics and Space Astronomy University of Colorado at Boulder X-ray.
Small scale modifications to the power spectrum and 21 cm observations Kathryn Zurek University of Wisconsin, Madison.
Semi-analytical model of galaxy formation Xi Kang Purple Mountain Observatory, CAS.
G. Mangano 1 Relic Neutrino Distribution Gianpiero Mangano INFN, Sezione di Napoli Italy.
NEUTRINOS IN THE INTERGALACTIC MEDIUM Matteo Viel, Martin Haehnelt. Volker Springel: arXiv today Rencontres de Moriond – La Thuile 15/03/2010.
Evolution of perturbations and cosmological constraints in decaying dark matter models with arbitrary decay mass products Shohei Aoyama Nagoya University.
WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.
Study of Proto-clusters by Cosmological Simulation Tamon SUWA, Asao HABE (Hokkaido Univ.) Kohji YOSHIKAWA (Tokyo Univ.)
DESY, 30 September 2008 Julien Lesgourgues (CERN & EPFL)
MATTEO VIEL STRUCTURE FORMATION INAF and INFN Trieste (Italy) SISSA – 8 th and 11 th March 2011 Lecture 3.
Cheng Zhao Supervisor: Charling Tao
Cosmological constraints on neutrino mass Francesco De Bernardis University of Rome “Sapienza” Incontro Nazionale Iniziative di Fisica Astroparticellare.
3D Matter and Halo density fields with Standard Perturbation Theory and local bias Nina Roth BCTP Workshop Bad Honnef October 4 th 2010.
Gamma-ray emission from warm WIMP annihilation Qiang Yuan Institute of High Energy Physics Collaborated with Xiaojun Bi, Yixian Cao, Jie Liu, Liang Gao,
Sterile neutrinos with a pinch of pepper (terrible, terrible title) Cosmo 07, Brighton Anže Slosar, Oxford University.
Jan Hamann Rencontres de Moriond (Cosmology) 21st March 2016
Sterile Neutrinos and WDM
Galaxy formation with warm dark matter
Cosmology With The Lyα Forest
Neutrino Masses in Cosmology
Mildly Mixed Coupled cosmological models
STRUCTURE FORMATION MATTEO VIEL INAF and INFN Trieste
Gamma-ray emission from warm WIMP annihilation
STRUCTURE FORMATION MATTEO VIEL INAF and INFN Trieste
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
Brightest ~500,000 Galaxies in the Northern Hemisphere (1977; RA & DEC only) 2-D “lacework” pattern.
Presentation transcript:

1 A VIEW ON THE MATTER POWER AT MEDIUM SCALES MATTEO VIEL INAF and INFN Trieste COSMOCOMP Trieste – 7 th September 2012

OUTLINE - Neutrinos/warm dark matter impact at the linear order - Neutrinos/warm dark matter in N-body/hydrodynamic simulations: methods - Neutrinos/warm dark matter impact on cosmological structures - Constraints on neutrinos and warm dark matter QUANTITATIVE COSMOLOGY PHYSICAL EFFECT AT LINEAR ORDER PHYSICAL EFFECT VIA NUMERICAL MODELLING (NON LINEAR) MEASURE THE EFFECT FROM REAL DATA (IF POSSIBLE)

NEUTRINOS

NEUTRINOS in the linear regime Shift of the matter radiation equality Suppression of power in the linear regime (CMB + BAO/SN constraints) (Constraints from the LSS) Lesgourgues & Pastor 2006 M   eVM   eV Komatsu et al. 2011

NEUTRINOS in the the non-linear regime: methods - I - NEUTRINO PARTICLES: included in the simulations in the initial conditions with their momentum and clustering properties. Depending on the problem one could follow forces on neutrinos either on the particle mesh grid only or using the tree. This method is prone to Poisson noise. - FOURIER/GRID NEUTRINOS: Neutrino clustering followed on the particle- mesh grid (code is interfaced with CAMB tables). Neutrino clustering kept at the linear level. Fast method. - HYBRID CODE: that follows the neutrinos in momentum space (time consuming and applied to single objects) - NEW BOLTZMANN CODE: The smooth neutrino component is evaluated from that background (N-body simulations) by solving the Boltzmann equation linearised with respect to the neutrino overdensity (Yacine & Bird 2012) RECENT REFERENCES: Brandbyge et al JCAP, 08, 20 Brandbyge et al JCAP, 05, 002 Brandbyge & Hannestad 2010 JCAP, 09, 014 MV, Hahnelt & Springel 2010 JCAP, 06, 015 Bird, MV & Haehnelt 2012 MNRAS, 420, 2551 Wagner, Verde & Jimenez 2012 arXiv

Matter z = 3 1) Significant non linear evolution at the smallest scales 2) Percent level discrepancies between particle and grid methods 3) Poissonian contribution affects small scales Methods differ NEUTRINOS in the the non-linear regime: methods - II

NEUTRINOS and the Intergalactic Medium (IGM) Viel, Haehnelt & Springel 2010, JCAP, 06,15 TreeSPH code Gadget-III follows DM, neutrinos, gas and star particles in a cosmological volume Since small scales are important we need to include baryons M   eV (2  )

NEUTRINOS: impact on the non-linear matter power Viel, Haehnelt & Springel 2010, JCAP, 06,15 Full hydro simulations: be aware that gas physics does impact at the <10 % level at scales k < 10 h/Mpc

NEUTRINOS: the neutrino power spectrum Increasing neutrino mass

N-body simulations: non-linear regime Bird, MV, Haehnelt 2012 LINEAR SIMULATIONS HALOFIT CAMB patches /  FIT TO THE SIMShttp://

NEUTRINOS: peculiar velocity evolution of neutrinos and DM Francisco Villaescusa-Navarro et al. 2012

NEUTRINOS: density profiles Francisco Villaescusa-Navarro et al DARK MATTER NEUTRINOS

NEUTRINOS: constraints M now in the range 0.05 – 0.3 eV Tightest constraints from the SDSS Lyman  forest (Seljak et al. 06): < eV (2  ) LSS constraints from SDSS LRGs M  < 0.26 eV (De Putter et al. 2012) Constraints from CFHTLS+VIPERS reconstruction of the non-linear P(k): < 0.3 eV Xia, Granett, MV et al. 2012

NEUTRINOS: CFHTLS + VIPERS in harmonic space

NEUTRINOS: CFHTLS+VIPERS and neutrino masses Xia, Granett, MV et al. 2012

WARM DARK MATTER

Warm Dark Matter and structure formation  CDM k FS ~ 5 T v /T x (m x /1keV) Mpc -1 See Bode, Ostriker, Turok 2001 Abazajian, Fuller, Patel 2001 Avila-Reese et al Boyarsky et al Colin et al Wang & White 2007 Gao & Theuns 2007 Abazajian et al Lovell et al Maccio’ et al z=0 z=2 z=5 1 keV

Warm Dark Matter and non-linear power - II Range of wavenumbers important for weak lensing tomography, IGM and small scale clustering of galaxies! MV, Markovic, Baldi & Weller 2012 MNRAS, 421, 50

WDM and non-linear power - III: astrophysics (see also Rudd et al. 08, Guillet et al. 10 Van Daalen et al. 11, Casarini et al. 11 Semboloni et al. 11 Lovell et al. 12 Kang et al. 12)

WDM and non-linear power: application to weak lensing

WDM constraints from LSS Tightest constraints on mass of WDM particles to date: m WDM > 4 keV (early decoupled thermal relics) m sterile > 28 keV (standard scenario) MV et al. 08 Seljak et al. 06 Boyarsky et al. 09 COLD + WARM DARK MATTER

WDM and non-linear power: weak lensing - I See Smith & Markovic 2011 for a comprehensive study of the halo model in WDM

Brandbyge et al NEUTRINOS in the the non-linear regime: methods - II

NEUTRINOS: matter and halo clustering

NEUTRINOS: CFHTLS+VIPERS and the non-linear regime Coupon et al Granett et al. 2011

Tools: high performance computational facilities Darwin CambridgeCosmos New CINECA (Italy) Neutrino universe simulations (in order to appreciate non-linear effects): default runs (with hydro): ~ 10 khrs (total wallclock time)

Neutrinos in hydro simulations: the distribution of high-z voids Navarro-Villaescusa, Vogelsberger, MV, Loeb 2012 PDF of rare events does carry information see e.g. Paranjape & Sheth 12

NEUTRINOS: halo mass functions Marulli, Carbone, MV, Moscardini e Cimatti 2011, MNRAS, 418, 346

NEUTRINOS: Number of relativistic species Xia, Granett, MV et al. 2012