The beauty of the corona 2006 March 29, Turkey Permission by Hanna Druckmullerova and Miloslav Druckmuller.

Slides:



Advertisements
Similar presentations
Masuda Flare: Remaining Problems on the Looptop Impulsive Hard X-ray Source in Solar Flares Satoshi Masuda (STEL, Nagoya Univ.)
Advertisements

RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
Thick Target Coronal HXR Sources Astrid M. Veronig Institute of Physics/IGAM, University of Graz, Austria.
Solar Theory (MT 4510) Clare E Parnell School of Mathematics and Statistics.
Flare energy release and wave dynamics in nearby sunspot Solar and Stellar Flares, Observations, simulations and synergies June , 2013, Prague,
Energy Release and Particle Acceleration in Flares Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
The Physics of Solar Flares Examining Solar Flares and Radio Bursts By Caylin Mendelowitz and Claire Rosen.
Solar flares and accelerated particles
RADIAL OSCILLATIONS OF CORONAL LOOPS AND FLARE PLASMA DIAGNOSTICS Yu.G.Kopylova, A.V.Stepanov, Yu.T.Tsap, A.V.Melnikov Pulkovo Observatory, St.Petersburg.
Flare Luminosity and the Relation to the Solar Wind and the Current Solar Minimum Conditions Roderick Gray Research Advisor: Dr. Kelly Korreck.
Low-Energy Coronal Sources Observed with RHESSI Linhui Sui (CUA / NASA GSFC)
Jaroslav Dudík 1,2 Elena Dzifčáková 3, Jonathan Cirtain 4 1 – DAMTP-CMS, University of Cambridge 2 – DAPEM, FMPhI, Comenius University, Bratislava, Slovakia.
Electron Acceleration at the Solar Flare Reconnection Outflow Shocks Gottfried Mann, Henry Aurass, and Alexander Warmuth Astrophysikalisches Institut Potsdam,
Coronal Loop Oscillations and Flare Shock Waves H. S. Hudson (UCB/SSL) & A. Warmuth (Astrophysical Institute Potsdam) Coronal loop oscillations: introduction.
Solar and Stellar Flares Hugh S. Hudson SSL, UC Berkeley 1 May
X-Ray Observation and Analysis of a M1.7 Class Flare Courtney Peck Advisors: Jiong Qiu and Wenjuan Liu.
Ryan Payne Advisor: Dana Longcope. Solar Flares General  Solar flares are violent releases of matter and energy within active regions on the Sun.  Flares.
Sub-THz Component of Large Solar Flares Emily Ulanski December 9, 2008 Plasma Physics and Magnetohydrodynamics.
Modeling the Neupert Effect in Flares: Connecting Theory and Observation Andrea Egan Advisors: Dr. Trae Winter and Dr. Kathy Reeves.
Solar Flare Particle Heating via low-beta Reconnection Dietmar Krauss-Varban & Brian T. Welsch Space Sciences Laboratory UC Berkeley Reconnection Workshop.
The Sun Astronomy 311 Professor Lee Carkner Lecture 23.
Reconstructing Active Region Thermodynamics Loraine Lundquist Joint MURI Meeting Dec. 5, 2002.
Magnetic Reconnection Rate and RHESSI Hard X-Ray Imaging Spectroscopy of Well Resolved X-class Flares Yan Xu, Ju Jing, Wenda Cao, and Haimin Wang.
Thomas Zurbuchen University of Michigan The Structure and Sources of the Solar Wind during the Solar Cycle.
Space and Astrophysics Generation of quasi- periodic pulsations in solar flares by MHD waves Valery M. Nakariakov University of Warwick United Kingdom.
Coronal Heating of an Active Region Observed by XRT on May 5, 2010 A Look at Quasi-static vs Alfven Wave Heating of Coronal Loops Amanda Persichetti Aad.
The Sun. Sun Considered a medium STAR 93,000,000 miles away from Earth 1.39 million kilometers in diameter (one million Earths can fit inside the sun.
High-Cadence EUV Imaging, Radio, and In-Situ Observations of Coronal Shocks and Energetic Particles: Implications for Particle Acceleration K. A. Kozarev.
ABSTRACT This work concerns with the analysis and modelling of possible magnetohydrodynamic response of plasma of the solar low atmosphere (upper chromosphere,
The Sun and the Heliosphere: some basic concepts…
Flare Thermal Energy Brian Dennis NASA GSFC Solar Physics Laboratory 12/6/20081Solar Cycle 24, Napa, 8-12 December 2008.
Multiwavelength observations of a partially occulted solar flare Laura Bone, John C.Brown, Lyndsay Fletcher.
The Relation between Soft X-ray Ejections and Hard X-ray Emission on November 24 Flare H. Takasaki, T. Morimoto, A. Asai, J. Kiyohara, and K. Shibata Kwasan.
Solar Flare Physics B.V. Somov Solar Physics Department Astronomical Institute Moscow State University My friend Eric.
The Influence of the Return Current and the Electron Beam on the X-Ray Flare Spectra Elena Dzifčáková, Marian Karlický Astronomical Institute of the Academy.
The Influence of the Return Current and Electron Beam on the EUV and X-Ray Flare Emission E. Dzifčáková, M. Karlický Astronomical Institute of the Academy.
Introduction to Space Weather Jie Zhang CSI 662 / PHYS 660 Spring, 2012 Copyright © The Heliosphere: The Solar Wind March 01, 2012.
M. L. Khodachenko Space Research Institute, Austrian Academy of Sciences, Graz, Austria Damping of MHD waves in the solar partially ionized plasmas.
Modelling the radiative signature of turbulent heating in coronal loops. S. Parenti 1, E. Buchlin 2, S. Galtier 1 and J-C. Vial 1, P. J. Cargill 3 1. IAS,
1 SPD Meeting, July 8, 2013 Coronal Mass Ejection Plasma Heating by Alfvén Wave Dissipation Rebekah M. Evans 1,2, Merav Opher 3, and Bart van der Holst.
S.I.Bezrodnykh, V.I.Vlasov, B.V.Somov
Winter Sun. Новые направления в физике больших солнечных вспышек С.И. Безродных, Л.С. Леденцов, Б.В. Сомов Отдел физики Солнца ISR, Febr 8, 2009 My friend.
Pre-accelerated seed populations of energetic particles in the heliosphere N. A. Schwadron* and M. Desai Southwest Research Institute *Also, Boston University.
Courtesy of John Kirk Particle Acceleration. Basic particle motion No current.
PLASMA HEATING DURING THE PARAMETRIC EXCITATION OF ACOUSTIC WAVES IN CORONAL MAGNETIC LOOPS K.G.Kislyakova 1,2, V.V.Zaitsev 2 1 Lobachevsky State University.
Simulation Study of Magnetic Reconnection in the Magnetotail and Solar Corona Zhi-Wei Ma Zhejiang University & Institute of Plasma Physics Beijing,
Determining the Heating Rate in Reconnection Formed Flare Loops Wenjuan Liu 1, Jiong Qiu 1, Dana W. Longcope 1, Amir Caspi 2, Courtney Peck 2, Jennifer.
NON-THERMAL   DISTRIBUTIONS AND THE CORONAL EMISSION J. Dudík 1, A. Kulinová 1,2, E. Dzifčáková 1,2, M. Karlický 2 1 – OAA KAFZM FMFI, Univerzita Komenského,
Small scale energy release can play an important role in many phenomena: solar flares, coronal heating, fast solar wind etc. However, microwave observations.
Magnetic reconnection in stars: fast and slow D. J. Mullan University of Delaware, Newark DE USA.
Probing Electron Acceleration with X-ray Lightcurves Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
Energy Budgets of Flare/CME Events John Raymond, J.-Y. Li, A. Ciaravella, G. Holman, J. Lin Jiong Qiu will discuss the Magnetic Field Fundamental, but.
Flare-Associated Oscillations Observed with NoRH Ayumi Asai (NSRO) Nobeyama Symposium 2004 : 2004/10/26.
Introduction In a solar flare, charged particles (for example fast electrons) are accelerated along magnetic field lines in the solar atmosphere, travelling.
“Ambipolar Diffusion” and Magnetic Reconnection Tsap Yu. T
Microwave emission from the trapped and precipitated electrons in solar bursts J. E. R. Costa and A. C. Rosal1 2005, A&A, 436, 347.
Stuart D. BaleFIELDS SOC CDR – Science Requirements Solar Probe Plus FIELDS SOC CDR Science and Instrument Overview Science Requirements Stuart D. Bale.
Shock heating by Fast/Slow MHD waves along plasma loops
ISSI, Beijing, China. The famous example of the decaying kink oscillations of coronal loops observed with the TRACE ISSI, Beijing,
Introduction to Space Weather Jie Zhang CSI 662 / PHYS 660 Fall, 2009 Copyright © The Heliosphere: Solar Wind Oct. 08, 2009.
Observations of the Thermal and Dynamic Evolution of a Solar Microflare J. W. Brosius (Catholic U. at NASA’s GSFC) G. D. Holman (NASA/GSFC)
Introduction to Space Weather Jie Zhang CSI 662 / PHYS 660 Spring, 2012 Copyright © The Sun: Magnetic Structure Feb. 16, 2012.
CME/Flare energetics and RHESSI observations H.S. Hudson SSL/UCB.
On the frequency distribution of heating events in Coronal Loops, simulating observations with Hinode/XRT Patrick Antolin 1, Kazunari Shibata 1, Takahiro.
Dong Li Purple Mountain Observatory, CAS
Physics of Solar Flares
Diagnosing kappa distribution in the solar corona with the polarized microwave gyroresonance radiation Alexey A. Kuznetsov1, Gregory D. Fleishman2 1Institute.
Introduction to Space Weather
Coronal Loop Oscillations observed by TRACE
Flare-Associated Oscillations Observed with NoRH
Presentation transcript:

The beauty of the corona 2006 March 29, Turkey Permission by Hanna Druckmullerova and Miloslav Druckmuller

Некоторые новые аспекты физики солнечной короны Б.В. Сомов Boris V. Somov Astronomical Institute Moscow State University ИКИ

Корона украшает… Солнце

Красота короны The beauty of the corona 2006 March 29, Turkey Permission by Hanna Druckmullerova and Miloslav Druckmuller

Корона украшает… Солнце

Courtesy of Jean Mouette Courtesy of Miloslav Druckmuller Загадки солнечной короны НЛО ?

Все ли мы знаем о солнечной короне ? Написал стихи…, Исчерпал тему.

2010 July 11, French Polynesia, White-light image and simultaneous AIA (SDO) Courtesy of CNRS France and AIA (SDO) from NASA

Почему солнечная корона – часть современной плазменной астрофизики ?

План доклада ► Сильное магнитное поле ► Магнитное пересоединение и вспышки как источник энергии для нагрева короны ► Особенности МНГ волн, связанные с потерями энергии на излучение

Плазма в сильном магнитном поле Somov B.V., Syrovatskii S.I., Appearance of a current layer in a plasma moving in the field of a magnetic dipole Appearance of a current layer in a plasma moving in the field of a magnetic dipole. Soviet Physics – JETP, 34, 992, 1972 Solar wind

Вагнер С.А., Сомов Б.В., Крупномасштабные структуры солнечной короны в приближении сильного поля. В сб. «Космические исследования», Ст.Петербург, ФТИ РАН, 1991, с (a)Disruption of RCL due to reconnection and magnetic tension forces (b)Recovery of RCL via a secondary RCL

Non-stationary processes in a coronal streamer Вагнер С.А., Сомов Б.В., Крупномасштабные структуры солнечной короны в приближении сильного поля. В сб. «Космические исследования», Ст.Петербург, ФТИ РАН, 1991, с (a)Disruption of a coronal streamer due to reconnection and magnetic tension forces (b)Recovery of a disrupted coronal streamer via a secondary RCL

Движущийся магнитный остров в пересоединяющем токовом слое коронального стримера

Понимание условий формирования «магнитных островов» в пересоединяющем токовом слое позволит лучше изучить физические условия в корональном стримере

Умеренные температуры в короне ► Широкий диапазон температур ► Сильное магнитное поле определяет распределение температур

The soft X-ray emission is thermal bremsstrahlung, up to ~ 10 E7 ergs / cm E2 sec, is a direct measure of the heat input to maintain the soft X-ray corona

Самые высокие температуры в короне T > 10 keV ! keV keV keV 8-10 keV keV keV footpoints Sui, Holman, 2003 Градиент температуры направлен к высокотемпературному турбулентному токовому слою (super-hot turbulent-current layer, SHTCL) temperature increase

Сверх-горячий турбулентный токовый слой (SHTCL) ► Мощный нагрев электронов и ионов за счет взаимодействия частица волна Somov, 2012, Plasma Astrophysics, Part II, Reconnection and Flares, Springer

Пересоединяющий токовый слой в хвосте магнитосферы Земли Courtesy by ESA

Механизмы нагрева короны ► МГД волны: быстрые, медленные, альвеновские, энтропийные, поверхностные и объемные, изгибные в тонких магнитных трубках, ударные волны ► Нановспышки Паркера: «The magnetic energy is converted to heat in small transient bursts which are called nanoflares» ~ 10 E23 ergs ► Аннигиляция магнитного поля в пересоединяющих токовых слоях (во вспышках любого масштаба (Sweet, Parker, Syrovatskii) во всех масштабах

Крупномасштабное пересоединение в короне и солнечном ветре хорошо наблюдается, исследуется и моделируется Wavy Reconnecting Current Layer Copyright: Springer SBM, 2013 Traditional view of the solar wind origins Slow Wind Fast Wind

Large-scale reconnection in the solar wind Permission by NATURE Publishing Group To the Sun

Reconnection in flares heats the corona in active regions but the specific properties of a SHTCL are important ► Collisionless reconnection with wave-particle interaction inside the SHTCL ► Particle acceleration in 3-component magnetic field plus electric field ► Non-classic heat transfer ► Reverse-current electric field effect Золотой век МГД …

Open issues ► МГД волны в короне имеют весьма специфические свойства, которые трудно, но необходимо учесть в общей теории нагрева короны Somov B.V., Dzhalilov N.S., Staude J., Peculiarities of entropy and magnetosonic waves in optically thin cosmic plasma, Astronomy Letters, 33, 309, Somov B.V., Dzhalilov N.S., Staude J., Instability of entropy waves in cosmic plasma, Cosmic Research, 46, 393, 2008.

MHD small-amplitude waves ► in an optically thin, perfectly conducting, uniform plasma ► with a cosmic abundance of elements ► in a magnetic field ► with electron heat conduction along magnetic field ► with proton heat conduction across magnetic field

MHD equations Radiative cooling of an optically thin plasma L =n 2 q(T) [erg s -1 сm -3 ] H h where

Radiative loss function vs. temperature T c alculated at the PAI using the code and atomic database CHIANTI: NRL (USA), RAL (UK), MSSL (UK), Universities of Florence (Italy) andCambridge (UK), George Mason University (USA) Function q strongly depends on temperature T but very weakly depends on plasma density n

Condition of the instability for entropy waves - regions of maximal instability k B0B0 > 0

Instability growth time for entropy waves vs. temperature at fixed plasma densities: n 1 =10 9 сm -3 n 2 =10 10 сm -3 n 3 =10 11 сm -3  can vary over a very wide range: from tenths of a second to tens of minutes Slight stratification of the curves because of a weak dependence on magnetic field

The instability mechanism In the regions of a rapid decrease in the radiative loss function q with temperature T, a small increase in temperature is accompanied by a large decrease in the rate of radiative cooling

Entropy waves are becoming unstable but they play important role in ► the problem of evolutionarity of shock waves and other MHD discontinuities ► the problem of evolutionarity of shock waves and other MHD discontinuities (RCL) ► the problem of coronal heating Somov B.V., Plasma Astrophysics, Part I, Fundamentals and Practice, Springer, 2013

Evolutionarity of an ordinary shock waves Small-amplitude waves in plasma moving through a shock wave without magnetic field See Chap. 17 in Somov B.V., Plasma Astrophysics, Part I, Fundamentals and Practice, Second Edition, New York, Springer SBM, 2013 EwSw

In contrast to the entropy waves, the magnetoacoustic waves are damped The damping decreament d = Im  / Re  < 0 Somov B.V., Dzhalilov N.S., Staude J., Astronomy Letters, 33, 309, 2007

Growth rate as a function of the temperature and wavelength Two regions of strong instability (two main minima) at temperatures T 1 ~2 x 10 4 K and T 2 ~ 3 x 10 5 K B = 1000 G The angle  between the wave vector k and the magnetic field vector B is taken to be  /4

Damping decrement of fast magnetoacoustic waves as a function of temperature and density Very weak damping!

The damping decreament for slow waves is 4-6 order of magnitude larger than that for fast waves TRACE Extremely strong damping !

Aschwanden M.J., Nightigale R.W., Andries J., et al., 2003, ApJ, 598, 1375 Aschwanden M.J., Nightigale R.W., Andries J., et al., 2003, ApJ, 598, 1375 ► 11 quasi-periodic events observed in coronal loops by TRACE in EUV with period   = s. ► Number of oscillations = Damping time / Period N obs =      ► Damping decrement 0.06 < d < 1.6 ► Plasma density inside the loops n int = ( ) x 10 9 cm -3 We suggest that observed oscillations are related to the rapid damping of slow waves in coronal loops

Поглощения медленных волн в зависимости от магнитного поля B TRACE

► Instead of the expected excitation of magnetoacoustic waves (by analogy with ordinary sonic waves), the thermal instability is stabilized (in a wide range of conditions) by a strong magnetic field ► However, magnetoacoustic waves are damped due to radiative energy losses ► Slow waves are damped as rapidly as observed oscillations of coronal loops

Прогресс в физике солнечной короны Прогресс в физике солнечной короны стабильный, эволюционный ► Нагрев короны - сотрудничество двух механизмов ► Хорошая теория нагрева короны ожидается ► Хорошая теория нагрева короны ожидается (есть все предпосылки) Л. Кичатинов ► Новые технологии позволят открыть новые свойства короны ► Интерес к солнечной короне будет расти

Thanks for your attention! 250 years

Thanks for attention !

Подробный доклад в следующий понедельник, 11 февраля в 15:20 в конференц-зале ГАИШ МГУ на семинаре «Плазменная астрофизика и физика Солнца»